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CHAPTER 1 

INTRODUCTION 

1.1    One-Success Random Access without Feedback 

The random multiaccess system that we designate here by one-success random access 

without feedback can be presented as follows: suppose that T active stations among M 

stations contend for transmission over a common medium in L time slots (also called 

minislots). Each active station transmits in a subset of these minislots (the subsets 

chosen by the stations being mutually independent). Success occurs if, during at least one 

minislot, there is a single transmission; otherwise, a failure occurs. We seek transmission 

policies that minimize the probability of failure. This problem was formulated in [1]. 

Some comments on this model are in order as presented in [1]. First, the stations do 

not receive any feedback during the L minislots. Second, it does not matter how many 

stations transmit in slots without a conflict (that problem is addressed in [2]), as long as 

there is at least one. As a matter of fact, this discussion about one-success random access 

without feedback systems is motivated by the difficulty of transmitter synchronization in 

a code-division multiple access system (in which each large data packet transmission is 

preceeded by L minislots); during those minislots, the transmitters attempt to notify the 

receiver which code is being used for the transmission that immediately follows. Since no 

more than one of the packets that follow can be received (or "captured"), there is little 

reason to be concerned whether more than one packet has been captured. 



Throughout this thesis, we assume M = oo, which means that the T stations in- 

dependently select sets of slots in which to transmit, each using the same probability. 

It models the situation in which T active stations are chosen from a very large finite 

population. 

1.2    Some Simple Transmission Strategies 

The first simple transmission policy one can think of is the following: each active 

station transmits in each slot with probability a. In this case, the probability of failure 

is given by: 

PF =[l-aT(l-a)T-l]L 

Figure 1.1 illustrates that the minimum over a of the probability of failure is achieved for 

a= h. But the point is that this transmission policy is optimal only for that particular 

value of T and therefore is inappropriate when T is unknown. 

Figure 1.1 Probability of failure when each active station transmits in each minislot 
with probability 1/a 



Other simple policies exist (and have been simulated in [1]), but the same last remark 

applies. Hence we need to consider a more specific transmission policy that would be 

suitable over a range of values of T. This is the focus of this thesis, as described in more 

detail in the next section. 

1.3    Proposed Transmission Strategy for Unknown 

and Bounded Number T of Active Stations 

In the remainder of this thesis, we assume that the number of active stations T is 

unknown and that it is bounded by some positive integer T0: 1 < T < T0. Within this 

framework we define Pp such that: 

VT0,Va,   PF(T0,a)=max1<r<ToPi?(T,a) (1.1) 

where a is the transmission policy (common to all T active stations). We want to find 

the transmission policy a that minimizes PF(TQ,3L). 

Here is a transmission strategy to handle this case [1]: an active station transmits 

in each slot, transmitting in slot i with probability a{, where ax > a2 > ... > aL are the 

parameters of the policy. For that policy, 

PF(T,a) = f[[l - Ta,(l - at)7"-1] (1.2) 

since 

1. the probability that there is a success in slot i is Psi = Taj(l — ai)T~1, 

2. the probability that there is a failure in slot i is PFi = 1 — Pst, and 

3. the resulting probability of failure is the probability that there is a failure for each 
L 

one of the slots: PF = Yi PF{- 

In the next chapter, we investigate this transmission strategy by using a Poisson 

approximation for the probability of failure and give the corresponding optimal policy. 



CHAPTER 2 

OPTIMIZATION WHEN USING A POISSON 

APPROXIMATION 

We investigate here the transmission strategy proposed in the previous section (for 

a number of active stations T which is only known to satisfy 1 < T < T0). We first 

derive a Poisson approximation for the probability of failure, present a simple choice of 

a motivated by the approximation, and give a lower bound to the probability of failure. 

Then, we proceed to an optimization of a based on the approximate expression of the 

probability of failure. We finally compare the results with those obtained without using 

an approximation. 

2.1    Poisson Approximation of the Probability of 

Failure 

Recall that we want to find the transmission policy a that minimizes PF{T0,a), or 

equivalently that maximizes min ^ {-logPp{T,a)}. 

Now for any policy a, 

L 

-logPF(T,a)   =   -log]l[l-Tai{l-ai)
T-1] 

t=l 

L 
= Y^-iogii-Taiii-aiY 



=   X>(T,ai) (2.1) 
t=i 

where 

0(T, Of) = -log[l - T<n{\ - Oi)T~l] 

Let Ta; = — for 1 < i < L. Note that a* is the optimal transmission probability 

for a single slot for Tai stations. Then, using a Poisson approximation (or equivalently 

1 — a « exp(—a) and T — 1 « T), 

-* a.{ ■* Oj 

71         T_ 
«   -%[l-—--e T"i] 

«   <j>{logT-logTai) (2.2) 

where 0(u) == —/o^[l — eu_e"] is shown in Figure 2.1. 

Note that the functions logT i—> <j>{logT - logTai) are the same for all i, up to 

translation. Hence, in view of Equation (2.1), we can graphically represent -logPF(T,&) 

by superimposing the curves for the different i and taking the sum for each value of logT. 

We are now able to make a first conjecture on the transmission probability distribu- 

tion. 

2.2    First Conjecture on the Transmission Probabil- 

ity Distribution 

2.2.1    Transmission probability distribution 

Recall that we want to maximize min {-logPp(T,a)} over a. Under the 
1 < 1  < ±Q 

Poisson approximation, this quantity becomes: 

mini <T < Ty°°W» "mhV < IO9T< u*rt&«k*T-losT")} (2'3) 
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Figure 2.1 Plot of the function (ß(u) = -log[l - eu~eU] 

We can then conjecture that, as a first approximation, {logTai}^ < i < L should be 

equally spaced over [logl; logT0], or equivalently that, for some (A, B) G 9£*2, 

Vi/1 <i<L,   ai = A-Bi 

The upper part of Figure 2.2 shows the plot of {T^i <i< L when taking Tai to be 

1 and TaL to be T0, so that the range over which —logPF(T,a) takes high values covers 

[1;T0]. The lower part of this figure shows both the sample <f> functions and the resulting 

approximate probability of failure, obtained by summation. We primarily focus on the 

values taken by —logPF(T,a) when T varies over [1;T0] and would like to maximize the 

minimum over this reference interval. 

Some comments are in order: we note that — logPp(T, a) first rapidly increases when 

T is in the vicinity of 1, and then slightly decreases before stalling when T passes over 

To. This can be easily understood when one considers that the curves of the 0 functions 
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Figure 2.2 First conjecture about the transmission probability distribution and corre- 
sponding probability of failure 



are summed to produce -logPF(T,a). Consequently, one improvement of the previ- 

ous conjecture about the optimal transmission probability distribution would consist in 

increasing the number of Tai with values near the borders of the interval [1; T0]. 

Note that one might also want to extend the values of the Tai beyond T0 in order to 

avoid the observed stall of -logPF{T, a) in the vicinity of T0. Yet this would result in a 

less efficient use of our resources since T cannot be greater than T0. Put another way, 

we do not want -logPF(T, a) to take big values outside of the reference interval [1; r0]. 

In Section 2.2.3, we will give another approximate expression for -logPF(T,a), but 

whose validity is restricted to the use of the first conjectured transmission probability 

distribution. 

2.2.2 Comparison with the exact calculus 

This section is motivated by the fact that the approximate expression for -logPF(T, a) 

using the Poisson approximation cannot be considered a bound to the exact expression. 

Figure 2.3, in which we use the transmission probability distribution conjectured in Sec- 

tion 2.2.1, shows that the results between the exact and the approximate calculus are very 

close when T is large enough. Furthermore, -logPF(T,a) tends to be underestimated 

(so PF is overestimated) by the approximation when T is close to 1. 

2.2.3 Other approximate expression for -logPF(T,a) 

Under the assumptions that A log 7^ = cst and that L is large enough (typically 

greater than 20), it can be shown that, by using Riemann's approximation (c.f. Appendix 

A) 

-io9pF(T,*) « togTM-togrM-/^^-»^,^-, *<»>*'       (24) 

Since /^o0(w)d« = 1.1577, this leads to the particular following upper bound on 

-logPF(T,a): 
lm   x 1.1577 -L 

Vr,Va,   -lo9PF(T,a)  <  logTaL_logTai 

8 
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Figure 2.3 Comparison approximate/exact calculus 

Figure 2.4 shows a comparison between the results for —logPp(T, a) when using either 

a summation or an integration for the approximate expression. In this plot, L = 50; one 

should keep in mind that the discrepancy becomes more significant when L is lower. 

2.3    Upper Bound to -logPF{T,a) 

It might be useful to have a lower bound to PF, or equivalently an upper bound to 

—logPp(T, a), which could serve as a target for the optimization we want to do. Without 

making any further assumption on the transmission probability distribution, we know 

that min {-logPF(T,a)} is lower than the average of —logPF(T,a) over the 
1 < T < To 

interval [1,T0]. Moreover, —logPp{T,&) can be considered the sum of translated samples 

of the positive function <f>, which enables us to write the following inequalities: 
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Va,   min1 <T<T {~logPF(T, a)}    <    Av^ < y < T (-logPF(T, a)) 

Area under (—logPp) 
< 

< 

< 

Interval length 
L x (Area under </>) 

Interval length 

logTo — logl 
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L      r°° 
Va,   min1<r<    HoSPF(r,a)} < — • /««)*.= 

(oST< 0    ^-00 

1.1577 x L 
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(2.5) 

-log( Pf(T, Ta)) as a function of T for ^=200 and 1=50 

Figure 2.5 Upper bound to -logPp(T,&) 
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As shown in Figure 2.5, the bound we have just given is quite loose. This is because, 

on one hand, -logPF(T,a.) is not constant over [1,T0] and that, on the other hand, the 

samples of the <j> function take some significant values when T is close but lower than 

1 (in theory) or when T is close but greater than T0. However, one might expect the 

bound to be a bit tighter with the optimal transmission probability distribution; note 

that, ideally, we would like -logPF(T,a) to have a rectangular shape (zero outside of 

[1;T0] and equal to the upper bound inside the interval). 

2.4    Optimization of the Transmission Probability 

Distribution 

As far as now, we used equi-spaced parameters for the transmission policy a. But, as 

illustrated in Figure 2.2, -logPF{T,a) prematurely stalls when T gets close to either 1 

or TQ. One can then guess that more samples of the <f> function need be centered near the 

borders of [1;T0]. We chose here to perform an optimization of those policy parameters. 

Because using the exact expression of the transmission probability distribution to be 

optimized would be much too time consuming, we performed the optimization on the 

Poisson approximation of -logPF(T, a) by using the Matlab minimax function (local 

method). Figure 2.6 shows the optimal policy found for T0=50 and L=10, along with 

the corresponding failure probability -logPF(T,a). 

In the curve of the optimal policy, we observe that 1 < Tai and TaL < T0. Moreover, 

Tat is at first constant (indeed it slightly increases), then logTai linearly increases, and 

finally Tai once again becomes roughly constant. Similarly, in the curve of the resulting 

probability of failure, the presence of a local maximum near each end of the interval [1; To] 

reflects the need to prevent -logPF(T,a) from stalling at the borders of this interval, 

which can be easily understood when one considers both the shape of the </> function (see 

Figure 2.1) and what happened with the first conjectured policy (equi-spaced parameters, 

see Figure 2.2). This causes the transmission probability distribution to accumulate more 

12 
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Tai samples near the endpoints of the interval. Moreover, preventing -logPF(T,a) from 

stalling requires a larger number of Tai samples with values closer to T0 than to 1. As 

a consequence, since the interval edges require the greatest care, these are also points 

where the minimum of -logPF(T,a) over [1;T0] is reached: 

PF(T0,a) = PF       =PF (2.6) 
T=l T=T0 

Between the local maxima near the endpoints, the curve of -logPF(T, a) is not much 

larger than the minimum. Note that the performed optimization yields one (or more 

as shown later) intermediate flat portion(s) in the curve of the transmission probability 

distribution; this may cause the resulting -logPF(T,a) to fluctuate slightly over its 

minimum value, though one might think it could be avoided. 

2.4.1    Optimization for different values of L (T0 being fixed) 

Figures 2.7 through 2.11 show optimal policies and their resulting probability of failure 

for L taking values between 3 and 30, when T0 has been fixed to 50. 

As far as the transmission probability distribution is concerned, we can see that for a 

small value of L, such as L = 3 in Figure 2.7, we almost have a linear increase for logTai, 

such that all the [1;T0] interval is covered, with log(Ta2) being closer to log{Ta3) than 

from log(Tai) in order to prevent the stall of the probability of failure at T = T0 (see 

previous explanations at the beginning of Section 2.3 for more details). 

Let's now take a look at what happens when L gets larger. As indicated for L = 6 

(c.f. figure 2.8), several samples of Tai are first accumulated close to T0 because of the 

potential stall of the probability of failure at T0, which, as mentioned above, is the most 

significant problem that we have to face. Then, several samples of Tai are accumulated 

near 1 as seen in Figure 2.9. When L gets even larger (Figures 2.10 and 2.11), the optimal 

transmission policies that were found tend to converge towards a stairstep function, the 

interstep widths being geometrically distributed. Note that for T0 = 50, we get three 

distinct steps in the curve of the limit optimal transmission policy, although this number 

14 
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can vary, depending on the value of T0 and assuming that L is large enough to let these 

steps appear, as we shall see in the next subsection. 

As far as the resulting probability of failure is concerned, we can note that, when L 

doubles (from T = 3 to T = 6 for instance), then -logPF(T0,a) also roughly doubles, 

i.e., -log[PF(T0,a.)]L, which features the average probability of failure per slot, roughly 

stays the same. Hence, increasing L proportionally increases -logPF(T0,a.), but brings 

no improvement to the efficiency of the system over the number of minislots L. 

2.4.2    Optimization for different values of T0 (L being fixed) 

Figures 2.12 through 2.15 show optimal policies and their corresponding resulting 

probability of failure for T0 taking values between 26 and 2000, whereas L has been fixed 

to 10. 

When T0 is not too large compared to L, then the optimal transmission policy has 

a stairstep shape, whose interstep widths are roughly geometrically distributed. The 

number of steps depends on the value of T0 because the previous widths are limited 

in size, due to the limited width of the interval over which the § function takes some 

significant positive values. 

When To becomes very large with respect to L, then the transmission policy tends 

to have an initial step, a geometric increase and then a final step. The length of these 

steps is proportional to j^r and thus tends to zero when T0 goes to infinity, while at the 

same time, the fraction of the interval over which there is a linear increase approaches to 

1 (see Appendix B for more details about these subinterval lengths). 

From Figures 2.12 and 2.13, we can deduce that the width between consecutive steps 

in the curve of the transmission probability disribution is bounded by 

1.283 = I • 2.566 < (AlogTji < 2.566 (2.7) 

Moreover, we typically have 

Tai 
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and 

This enables us to make some recommendations, which is the purpose of the next 

chapter. 
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CHAPTER 3 

RECOMMENDED TRANSMISSION POLICY 

PARAMETERS 

3.1    Parameters of the Transmission Policy 

Based on the previous study and simulations, Figure 3.1 depicts the typical transmis- 

sion probability distribution that we would recommend for some given values of T0 and 

L. 

For the use of L minislots and a number of active stations bounded by T0, we propose 

to take a distribution for -logTai with an initial step, at value log(2.3) (whose length 

should be the nearest integer to 2+0£logTo) and a final step at value log(\ • T0) (whose 

length should be the greatest integer below 2+o^gTo)- Note that these interval lengths 

are slightly different from those given as an approximation in Appendix B in order to 

better -fit to the simulation results. 

Between these two end steps, the distribution of -logTai should be composed of N 

intermediate steps, roughly equally spaced and of the same length, where 

N = L^2 * (Mf • T0) - M2-3))J 

If jV = 0, then -logTai should linearly increase between the two end steps. Note that 

the value of iV comes from a relation analog to Equation (2.7), which was derived for 
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log(Ta.)     A 

logC-f^ 

log(2.3) 

2 + 0.4*logCy 2 + 0.4*log(T^) 

Figure 3.1 Recommended transmission probability distribution 

the Poisson approximation of the probability of failure. Numerically, we get N = 0 for 

1 < T0 < 32, JV = 1 for 32 < T0 < 281 and so on. 

3.2    Performance Comparison 

We now focus on the results gained for -logPpiT,a) and PF(T0,a), when using the 

exact expression of —logPp(T,B) (Equation (2.1)) for the evaluation of the probability of 

failure. As illustrated in Figure 3.2, the recommended policy parameters of the previous 

section sometimes lead to better results than the ones we would gain by using the "op- 

timized" parameters of the previous chapter. This is because the previous optimization 

was only performed on the approximate expression of —logPp(T,a), due to computing- 

time considerations; consequently, the recommended parameters reflect that some minor 

modification of those parameters can somewhat improve the system efficiency. 
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Tables 3.1 through 3.4 list, for different values of T0, the resulting -log(PF(T0,a.)L). 

For each value of T0, we successively compute -log{PF(T0,a)L) first by using the ex- 

act expression for the probability of failure along with the previously gained optimized 

parameters (which, in fact, are only optimal for the Poisson approximate expression of 

-logPF(T,&), then by using the exact expression along with the recommended param- 

eters, and by using the predicted value of PF based on an approximation (Equation 

(B.3)): 

-iogpf(r„a)~logToHy(7 + 1) 

where M = 0.4587, A = 1.1577 and 7 = 1.5. We finally give the corresponding results 

for the upper bound when using the Poisson approximation. 

Table 3.1 PF(T0,a) for optimized/recommended parameters when L = 3 

To 

-log{PF{TQ,3)1) 

Gained by 1 
expression { 
optimized 

parameters 

ising the exact 
ilong with the 
recommended 

parameters 

Prediction 
based 
on an 

approximation 

Upper bound 
to the 

Poisson 
approximation 

10 0.1982 0.2911 0.1344 0.5028 
20 0.1016 0.2435 0.1244 0.3864 
30 0.1483 0.2254 0.1192 0.3404 
40 0.1485 0.1923 0.1158 0.3138 
50 0.1430 0.1642 0.1133 0.2959 
70 0.1340 0.1293 0.1096 0.2725 
100 0.1040 0.0990 0.1061 0.2514 
200 0.0818 0.0576 0.0997 0.2185 
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Table 3.2 Pp(T0,a) for optimized/recommended parameters when L = 

To 

-log(PF(To,a)1) 

Gained by i 
expression . 
optimized 

parameters 

ising the exact 
along with the 

recommended 
parameters 

Prediction 
based 
on an 

approximation 

Upper bound 
to the 

Poisson 
approximation 

10 0.1982 0.2911 0.1344 0.5028 
20 0.2092 0.2212 0.1244 0.3864 
30 0.1915 0.2128 0.1192 0.3404 
40 0.1885 0.2060 0.1158 0.3138 
50 0.1819 0.2049 0.1133 0.2959 
70 0.1742 0.1847 0.1096 0.2725 
100 0.1638 0.1604 0.1061 0.2514 
200 0.1370 0.1264 0.0997 0.2185 

Table 3.3 Pp(To,a) for optimized/recommended parameters when L = 10 

To 

-log(PF(To,&)L) 

Gained by i 
expression i 
optimized 

parameters 

ising the exact 
sdong with the 

recommended 
parameters 

Prediction 
based 
on an 

approximation 

Upper bound 
to the 

Poisson 
approximation 

10 0.1864 0.2815 0.1344 0.5028 
20 0.1884 0.2283 0.1244 0.3864 
30 0.1976 0.2202 0.1192 0.3404 
40 0.1897 0.2062 0.1158 0.3138 
50 0.1797 0.2050 0.1133 0.2959 
70 0.1710 0.1996 0.1096 0.2725 

100 0.1540 0.1628 0.1061 0.2514 
200 0.1447 0.1501 0.0997 0.2185 
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Table 3.4 P/?(T0,a) for optimized/recommended parameters when L = 15 

To 

-log(PF(To,a)1) 

Gained by i 
expression i 
optimized 

parameters 

ising the exact 
along with the 

recommended 
parameters 

Prediction 
based 
on an 

approximation 

Upper bound 
to the 

Poisson 
approximation 

10 0.1864 0.2612 0.1344 0.5028 
20 0.2087 0.2351 0.1244 0.3864 
30 0.1913 0.2160 0.1192 0.3404 
40 0.1839 0.1930 0.1158 0.3138 
50 0.1675 0.1916 0.1133 0.2959 
70 0.1640 0.1904 0.1096 0.2725 
100 0.1564 0.1628 0.1061 0.2514 
200 0.1481 0.1461 0.0997 0.2185 
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CHAPTER 4 

CONCLUSIONS 

This thesis investigated a transmission policy for the case of an unknown but bounded 

number of active stations in a random multiple-access system without feedback. In 

particular, we came out with a description of the transmission policy parameters that 

roughly optimize the system efficiency for some given values of L, the number of access 

minislots, and of T0, the maximum number of active stations. Finally we gave some 

results for the probability of failure with the use of those recommended parameters. 

Future work might include finding an optimization method that can directly and 

efficiently produce the optimal parameters from the exact expression of the probability 

of failure. Also, the origin of the values found for the different steps of the transmission 

probability distribution would be worth to be investigated. Finally, further work should 

be done to find any existing more efficient transmission policy. 
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APPENDIX A 

EVALUATION OF THE PROBABILITY OF 

FAILURE WHEN USING RIEMANN'S 

APPROXIMATION 

Recall that Riemann's approximation can be written as follows: 

/  f(t) dt   =    lim J2 /(a +1 ) Ja JK ' n->oo    n       £-    v n   > 
i=0 

=   Jfe^-t/(»-«~) (A-l) »-»■<»    n      X=\ n 

and that the probability of failure satisfies, under the Poisson approximation assumption 
L 

VT,Va,   -logPF(T,a)   =   ^(T,^) 

=   Y,<f>(logT-logTai) (A.2) 
i=l 

where 

Vu,   0(u) = -/op[l - eu-e"] 

Let    < 
t = logT 

^ U = logTai    (l<i<L) 

Assumption 1: AlogTai = cst, or equivalently, U = t\ + (i — 1) • ^j^- 

Then Equation (A.2) becomes: 

-logPF(T, a) = JT 4>{t -*) = £>(*- i ■ ^9^ + ^^ - *i) 
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Then 
L tL-tx 

-logPF{T,*)   =   Ys^-i-^-r1) L 
L 

L       tL~h   En-^■tJ^1) (A.3) tL~h       L       i=1 L 

Assumption 2: L is large enough 

Applying Riemann's formula to Equation (A.3) yields the following approximation: 

-logPF{T,a)   «    T^-r'f,      Mx)dx 

tL — ti    Jt-(tL-ti) L, 

Thus, 

L /.f0gr+'O9Taf--(71)-iograi 

vr,va,  -fcv/vcr.a)« ^.^^.c^»^,,^ ^)dw     (A-4) 
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APPENDIX B 

EVALUATION OF SUBINTERVAL LENGTHS IN 

THE TRANSMISSION PROBABILITY 

DISTRIBUTION 

We assume that To is large with respect to L. In this case, the transmission probability 

distribution curve has an initial step, then a linear increase and finally another step, which 

is larger than the first one. We can therefore consider that a of the L <f> functions that 

are summed to produce log PF are centered close to logT = 0, that b of them are equally 

spaced (geometric increase) over [1; logT0} and that c of them are centered close to logT0, 

such that L — a + b + c. 

Let A = 1.1577 denote the area under a sample <j> function and M = 0.4587 be the 

maximum value of this function. Let ha, fo, and hc, respectively, denote the values of 

-logPF(T,a) at logT = 0, logT = \ • logT0, and logT = logT0. These three quantities 

should.be equal for an optimized transmission probability distribution, as shown in Sec- 

tion 2.3 (recall that, ideally, we would like the curve of -logPF(T,a) versus logT to be 

rectangular, i.e., —logPF(T,a) should be some positive constant inside [1;T0] this and 

zero otherwise). Due to the particular shape of the <j> function, this first implies that 

c — 7 • a, where 7 > 1. 

Now, by approximation, 
t 

haK a- M 

h>> w A * wn 

35 



So 

ha = hb 

L=a+b+c 

a-M = A-T±F 

L = a + b + 7 • a 

b=M4o£oa 

L = o-(l + M-IOQTQ 
+ 7) 

Hence 
a = 

1+ 
M-logT0 +7 

b = L-M-logTp 
A+M-logTo+i-A 

(B.l) 

C~  1 I M-Wi'Q +7 

In particular, M = 0.4587, A = 1.1577 and 7 = 1.5 yield 

L a = 2.5+0.3962-JoflTo 

7  _    0.3962-L-iogr0 
0 ~~ 2.5+0.3962-logTo 

C = 1.5-i 
2.5+0.3962-/osTo 

From Equation (B.l), we can note that the fraction f of sample <j> functions that are 

centered close to T — 1 does not depend on L. The same remark applies for £ and f. 

Moreover, T0 ->• 00 yields: 

a oc 

b->L~ 

L 
COC logTo 

0+ 

0+ 

(B.2) 

Thus, when T0 becomes very large, the transmission probability distribution curve tends 

to have only a linear increase over [1;T0], as examplified in section 2.4.2. 

Finally we can derive an approximate expression for - logPF(T0,a) as follows: 

-   , s       , w L'M L'A m,\ 
-logPpin, a) « A. « a • M « 1 + M^+7 « %To + A.(7 + i) (B'3> 

and note that for T0 » 1, -logPF(T0,a) » ^, which is the upper bound to. the 

Poisson approximation of -logPF{T,&) that we have derived in Section 2.3. 
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Channel Carrying: A Novel Handoff Scheme for Mobile 

Cellular Networks 

Junyi Li       Ness B. Shroff       Edwin K.P. Chong 

Abstract— 
We present a new scheme that addresses the call hand- 

off problem in mobile cellular networks. Efficiently solving 
the handoff problem is important for guaranteeing Quality 
of Service (QoS) to already admitted calls in the network. 
Our scheme is based on a new approach called channel car- 
rying: when a mobile user moves from one cell to another, 
under certain mobility conditions, the user is allowed to carry 
its current channel into the new cell. We propose a new 
channel assignment scheme to ensure that this movement of 
channels will not lead to any extra co-channel interference 
or channel locking. In our scheme, the mobility of channels 
relies entirely on localized information, and no global coordi- 
nation is required. Therefore, the scheme is simple and easy 
to implement. We further develop a hybrid channel carry- 
ing scheme that allows us to maximize performance under 
various constraints. 

We provide numerical results comparing our scheme with 
the traditional channel reservation and borrowing types of 
techniques. We find that our scheme outperforms the reser- 
vation scheme over a broad range of traffic parameters. Our 
scheme also outperforms the channel borrowing scheme un- 
der high loads. 

Keywords: Channel Borrowing, Dynamic Channel Allo- 
cation, Modified Fixed Channel Allocation, Channel Reser- 
vation. 

I. INTRODUCTION 

The increasing demand for mobile services has generated 
worldwide interest in wireless communication networks. 
Coupled with this interest comes the consumer expecta- 
tion that the wireless systems provide comparable quality 
of service to their wired counterparts. Studies have shown 
that one of the most important user concerns is that ser- 
vice not be cut off during an ongoing call. We address this 
concern by proposing a new scheme to achieve efficient call 
handoffs in wireless cellular networks. 

The use of cellular systems has been a very popular 
means of enhancing the capacity of wireless communica- 
tion networks. In such a system, the service area is di- 
vided into cells, and channels are reused among those cells. 
Here a channel is referred to as the unit of wireless spec- 
trum needed to serve a single user. For example, in a 
TDMA/FDMA system, a time-slot or carrier frequency can 
be considered as a channel. Channels that are used in one 
cell cannot be used in other cells that are closer than the 
minimum reuse distance. Handoff occurs when a mobile 
subscriber moves from one cell to another. A handoff call 
may be blocked if there is no free channel in the new cell. 

This research was supported in part by AT&T special purpose grant 
670-1285-2569, by the National Science Foundation through grants 
NCR-9624525, ANI 9805441, ECS-9410313, and ECS-9501652, and 
by the U.S. Army Research Office through grant DAAH04-95-1-0246. 

Please address all correspondence to Ness Shroff, Tel. +1 765 494 
3471, Fax. +1 765 494 3358. 

Since blocking a handoff call is less desirable than blocking 
a new call, specific schemes have been developed to prior- 
itize handoff calls. Two prioritization schemes have been 
commonly studied in the literature [14]. They are: 
• Channel reservation scheme: In this type of scheme, a 
number of channels are reserved solely for the use of hand- 
off, allowing both handoff and new calls to compete for the 
remaining channels [4], [8], [11]. Specifically, in each cell 
a threshold is set, and if the number of channels currently 
being used in the cell is below that threshold, both new 
and handoff calls are accepted. However, if the number of 
channels being used exceeds this threshold, an incoming 
new call is blocked and only handoff calls are admitted. 
» Queueing scheme: In this type of scheme handoff re- 
quests are queued, and may later be admitted into the 
network in case a channel frees up [10]. 

The above two schemes can also be integrated together 
to improve the handoff blocking probability and the overall 
channel utilization. The scheme we propose in this paper is 
also readily integrated with the queueing schemes. There- 
fore, we shall concentrate on comparing our scheme only 
with the reservation scheme. 

Our method for treating the handoff problem stems from 
the following simple idea. A user requesting a handoff al- 
ways occupies a channel in its current cell. Therefore, if 
that channel could be carried into the new cell, the hand- 
off request would not be blocked. When we say a channel 
is "carried" into a new cell, we mean that the mobile user 
continues to use this channel, but now communicates with 
the base-station in the new cell. From a practical point of 
view channel carrying is not difficult to achieve. For exam- 
ple, in an FDMA based system, suppose a user requesting 
handoff to some cell A communicates over a frequency band 
x that cell A is not allowed to use. Now, if normal handoff 
is not possible, the user (or its current base-station) could 
signal cell A giving it permission to communicate with it 
over channel x.1 In a similar way, channels can be carried 
in TDMA systems. 

Note that when a channel is carried into another cell, it 
shortens the reuse distance and may violate the minimum 
reuse distance requirement [6], [14]. To solve this problem, 
we propose a new channel assignment method that allows 
channels to be carried into a neighboring cell without vio- 
lating the minimum reuse distance requirement. Further- 
more, with an a priori agreement on channel movement, 
channel coordination can be achieved locally. This helps to 

1 We note that additional hardware equipment is required to imple- 
ment channel carrying, since the base-station in cell A has to trans- 
mit/receive not only on channels initially assigned to cell A, but also 
on channels that would be carried into cell A. 
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significantly simplify the implementation. The new handoff 
scheme proposed in this paper is called channel carrying. 

We first describe how the channels are assigned for the 
channel carrying scheme in a linear cellular (1-D) model, 
and then present our basic handoff algorithm. The linear 
cellular model is important since it is a good representation 
of a highway-type scenario. In addition, it also facilitates 
easy understanding of the basic concepts of the algorithm. 
We analyze our algorithm for the 1-D case and show that 
it provides substantially lower new call blocking and hand- 
off call blocking probabilities than the channel reservation 
scheme. We then introduce a refinement of our channel car- 
rying scheme, called the hybrid channel carrying scheme, 
which provides a useful design parameter that can be var- 
ied to satisfy various QoS constraints. We illustrate how 
to extend the channel carrying scheme to the planar (2-D) 
hexagonal model. We also provide numerical results that 
show that our scheme significantly outperforms the channel 
reservation technique over a large range of parameters. 

II. CHANNEL ASSIGNMENT 

For simplicity, we first describe our channel carrying 
scheme using a linear cellular system model. Later, in Sec- 
tion VI, we will briefly describe how to extend our channel 
carrying scheme to the 2-D cellular system. 

In the linear cellular system, cells (or base stations) are 
arranged in a linear configuration, as shown in Figure 1. 
Let N denote the total number of distinct channels that are 
available in the cellular system. Two cells can use the same 
set of channels as long as they are at least r cells apart.2 

This distance r is called the minimum reuse factor. In the 
conventional fixed channel assignment scheme, channels are 
assigned such that the same channels are reused exactly r 
cells apart, as shown in Figure 2. Therefore, the total num- 
ber of distinct channels available for each cell is N/r. We 
refer to this channel assignment as r-channel assignment. 

In our channel carrying scheme, we alleviate blocking 
due to handoff by allowing calls to "carry" channels from 
one cell to another. The author in [5] considered a similar 
idea of channel borrowing for prioritizing handoffs using 
r-channel assignment. However, when using r-channel as- 
signment, a call that carries a channel to an adjacent cell 
may violate the minimum reuse distance requirement. For 

2 Here we assume a minimum reuse distance-based fixed rule in cel- 
lular planning. In reality, however, dynamic reuse based on instanta- 
neous interference measurement is also possible. 
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example, in Figure 1, cells A and A' use the same set of 
channels. Suppose a call in cell A uses a channel y, and 
carries it to cell B. Now, if a user arrives in cell A' and uses 
channel y, then the two y channels are only a distance of 
r-1 cells apart, thus violating the minimum reuse distance 
requirement. One way to overcome this problem is to have 
global coordination algorithms that use channel locking [6] 
to ensure that such situations do not occur. For example, 
in Figure 1, knowing that channel y has been carried from 
cell A to cell B, we do not allow channel y to be used in 
cell A'. However, such schemes require excessive exchange 
of channel usage among remote cells, and channel locking 
could also degrade reuse efficiency [6]. 

To ensure that the minimum reuse distance require- 
ment is not violated, we use an (r + l)-channel assignment 
scheme. In other words, the same channels are reused ex- 
actly r + 1 cells apart, as shown in Figure 3. In this case, 
the total number of distinct channels available for each cell 
is N/(r +1). To ensure that the same channels do not 
get closer than r cells apart (due to channel carrying), we 
restrict the channel movement in the following way. Each 
channel is allowed to be carried in only one direction, left 
or right. This restriction thus divides the channels assigned 
to each cell into two types. Further, as shown in Figure 4, 
exactly the same division is used in cells that are a dis- 
tance r+1 apart. Using this (r + l)-channel assignment 
scheme, and the channel carrying algorithm described in 
the next section, we ensure that there is no co-channel in- 
terference due to channel movement, while avoiding the 
need for global coordination. 

III. HANDOFF ALGORITHM 

A. Algorithm Description 

To describe our handoff algorithm, we first focus our 
attention on a particular (arbitrary) cell, which we call the 
local cell. The adjacent cells to the left and right of the local 
cell are called foreign cells. The channels that have been 
assigned to the local cell are called local channels, and are 
divided into two types: local-left (LL) and local-right (LR) 
channels, as shown in Figure 4. An LL (LR) channel is one 



that can be carried to the left (right) cell during handoff. 
In other words, an LL (LR) channel can be used by a call 
in the local cell as well as in the foreign cell to the left 
(right). A channel from a foreign cell that is being used in 
the local cell is called a foreign channel. Foreign channels 
from the left cell are called foreign-left (FL) channels and 
foreign channels from the right cell are called foreign-right 
(FR) channels. 

The protocol to handle new call arrivals and handoff re- 
quests from a foreign cell is straightforward. When a new 
call arrives, we check if there are any idle (unused) local 
channels. If there are, the new call is accepted and assigned 
the idle channel; otherwise, the call is rejected (blocked). 
When a handoff call request is received from a foreign (left 
or right) cell, we check if there are any idle local chan- 
nels available. If there are, the handoff call is accepted 
and assigned the idle channel; otherwise, the foreign cell is 
notified that there are no idle local channels. 

The main part of the protocol is to handle a handoff 
request to a foreign cell, which we describe next. Explicit 
details of the protocol can be found in [7]. For simplicity, 
suppose a user U in the local cell wants to move to the 
left foreign cell. The handoff operation is attempted in the 
following order: 

1. If user U is currently using a foreign-left (FL) channel, 
then it simply carries it back to the left cell; otherwise, step 
2 is initiated. 
2. We send a handoff request to the left foreign cell. The 
foreign cell then executes the procedure described earlier. 
If the handoff is accepted, user U moves to the left cell and 
releases its own channel; if not, step 3 is initiated. 
3. If user U is currently using a local-left (LL) channel, 
then it carries it to the left cell; otherwise, step 4 is initi- 
ated. 
4. We check if there is an idle LL channel currently in the 
local cell. If so, U releases its own channel, grabs the idle 
LL channel, and carries it to the left cell; otherwise step 4 
is initiated. 
5. We check if there is an FL channel being used by some 
other user V in the local cell. If so, user U exchanges its 
channel with user V and then executes step 1 above; if not, 
we perform step 6. 
6. We check if there is an LL channel being used by some 
other user W in the local cell. If so, user U exchanges its 
channel with user W, and executes step 3 above. 
7. If all the above conditions do not hold, then the handoff 
cannot be accomplished. Normally, this would result in the 
handoff call being blocked. 

A similar procedure would be applied if a user in the local 
cell wanted to move to the right foreign cell. 

B. Salient Features of the Handoff Algorithm 

The following are some of the significant features of our 
algorithm. Again, for simplicity, we focus only on handoff 
from the local cell to the left foreign cell. 
♦ An important feature of our algorithm is that no global 
coordination is necessary, thus facilitating implementation. 
At the same time, the algorithm ensures that there is no co- 

channel interference due to channel movement. The major 
computational effort in the local cell includes signaling with 
the left foreign cells, channel swapping, and a simple table 
look-up. We will investigate the complexity of our protocol 
later in Section V-B.2 by estimating the expected number 
of times that intercellular signaling is sent and the number 
of times that channel swapping occurs for each call arrival. 
• In our algorithm, handoff calls have access to a. larger 
portion of the system capacity than new incoming calls. 
To see this, note that a new call is blocked if and only if 
there is no idle (local) channel in the local cell. On the other 
hand, a handoff request to the (left) foreign cell is blocked if 
and only if all the left-local (LL) channels are being used in 
the foreign cell. This occurrence is relatively rare because 
it requires that all three of the following conditions are 
simultaneously true: 

1. All the channels in the left foreign cell are being used. 
2. All the FL channels are being used by users in the left 

foreign cell. 
3. All the LL channels have been previously carried to the 

left foreign cell. 
It is therefore apparent that in our channel carrying 
scheme, handoff call requests are favored over new call re- 
quests. At the same time, we do not require channels to be 
reserved a priori for handoff calls. This helps increase the 
efficiency of our scheme compared to reservation schemes, 
as demonstrated in Sections IV-B,   V-B, and   VI-B. 

IV. PERFORMANCE ANALYSIS USING THE TWO-CELL 

MODEL 

A. Markov Chain Model for the  Channel Carrying and 
Reservation Schemes 

In this section we develop a Markov chain model to an- 
alyze the performance of our handoff algorithm. The QoS 
measures that we are interested in are: 
• PbN , the steady state probability of blocking a new call; 
and 
• PbH ! the steady state probability of blocking a handoff 
call. 

The system that we are interested in modeling is the 
linear cellular system shown in Figure 5(a). The traffic is 
assumed to be symmetrically distributed over all the cells; 
the new call arrival rate at every cell is An. The handoff 
rate between cells is assumed to be directly proportional 
to the number of users in that cell, so if a cell has i users 
the handoff rate to its neighboring cell is i\jj, as shown in 
Figure 5(a). Here the value 1/A# is denned as the expected 
time between the time-instant when a user enters a cell and 
the time-instant when it departs the same cell (given that 
this users' call does not terminate before departure). 

The analysis of this entire system is computationally in- 
feasible. Therefore, the performance analysis of call hand- 
off schemes in wireless systems is typically done by focusing 
on a single cell, which results in a one-dimensional Markov 
chain [8]. However, the one-cell model does not accurately 
capture the essence of our algorithm. For example, sup- 
pose that a user in the local cell wants to move to the left 
foreign cell.   Whether or not it carries a channel during 
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Fig. 5.     (a) Linear Cellular system with various traffic parameters, 
(b) Two-Cell model with the corresponding traffic parameters. 

handoff depends not only on the availability of FL and LL 
channels in the local cell but also on whether there is an 
idle channel in the left foreign cell. Hence, the availability 
of channels in adjacent cells is coupled. 

To alleviate difficulties with a one-cell model, we con- 
sider a two-cell model, as shown in Figure 5(b). We as- 
sume that in each cell A and B, new call requests arrive 
according to Poisson processes with rate An. The time it 
takes for each call in a cell to request a handoff to the 
other cell is assumed to be exponentially distributed with 
mean 1/A#. Call handoffs arrive from outside the two-cell 
subsystem according to a Poisson process with rate Aft. 
The time until a call terminates is assumed to be expo- 
nentially distributed with mean 1/HQ. Therefore the time 
until a call leaves the two-cell system (either due to hand- 
off or call termination) is exponentially distributed with 
mean \jy, = l/(/*o + -Vff)- Now, assuming that all of the 
above operations (new arrival, call handoff request, and call 
termination) are independent, we can analyze our two-cell 
system using a Markov Chain. 

Recall that the total number of local channels in each 
cell is M = N/(r +1). To further simplify the model, 
we assume that the total number of local channels, M, is 
divided into an equal number, m = M/2, of local left (LL) 
and local right (LR) channels. 

In our Markov chain model, we let NA G {0,. • •, M} 
and NB £ {0,...,M} represent the number of idle lo- 
cal channels in cell A and cell B, respectively. Next, let 
NB^A € {-f, • • •, 0,..., 4f} be defined as follows. If 
NB^A > 0, it denotes the number of foreign channels from 
cell B that are being used in cell A. On the other hand, if 
NB^A < 0, it denotes the number of foreign channels from 
cell A that are being used in cell B. Hence, NB^A^) can 
take values from -4f to f. The triple (NA,NB,NB^A) 

represents the state of the Markov chain. Although there 
are three components in each state, the state transition 
diagram of the Markov chain can be represented in a pla- 
nar fashion. To see this, recall that a foreign channel will 

move into a cell only when there is no idle local channel in 
that cell. Also, whenever service is terminated, the foreign 
channel within the local cell will be returned immediately. 
Thus, if we neglect the additional time it would take to 
return or carry a channel, it follows that 

'B^A   > 0      => ^ = 0 

'B-*A < 0    => NB = 0 

The above equations help restrict one degree of freedom 
thereby resulting in a planar or two-dimensional Markov 
chain. The state transition diagram of this Markov chain 
can be found in our technical report [7]. Let Pi,j,k = 
P{NA = i, NB = j, NB-^A — k} denote the steady state 
probability of the state {NA = i,Nß — J,NB^A = &}• 
We obtain these probabilities by exploiting the above 
mentioned symmetry and by applying standard numerical 
Markov chain techniques. 

Now observe Figures 5(a) and 5(b) again. In Figure 5(b) 
we focus only on cells A and B of Figure 5(a). Let the 
cells to the right of cell B and to the left of cell A be called 
external cells. The handoff rate A/, in the two-cell model of 
Figure 5(a) is actually the average of the state dependent 
handoff rate from their neighboring external cells. Averag- 
ing over all the states, .Aft is given by 

M M 

Aft = £(M - i)\H J2 E p«.;.*> 
t = 0 j=0 k = — m 

(1) 

where m = M/2. Since Aft depends on Pijtk, we iteratively 
solve the Markov chain. The iteration procedure is made 
to terminate when both the absolute and relative errors are 
less than 10-3. 

Having determined Pij,k, we calculate PJJV, the steady 
state probability of blocking a new call, and P^u, the steady 
state probability of blocking a handoff call by summing over 
the appropriate states. Specifically, 

m   M — k 
p™ = EE p°^k 

k=0 j=0 

Af-m-1 

PbH     = 2-u     P°<J'm> 
3=0 

where m = M/2, as before. 
Similarly, we can develop a Markov chain model to ana- 

lyze the system performance using the traditional channel 
reservation scheme. As in the channel carrying scheme, 
we focus on the two-cell model shown in Figure 5. The 
parameters Aft, An, A#, and fi are defined as before. 
Since no channel movement is allowed, the pair (NA, NB), 

NA e {0, ...,M'}, NB £ {0,.. .,M'}, suffices to charac- 
terize the state of the two-cell system. Here, M' = N/r is 
the total number of distinct channels available to each cell, 
and NA (NB) is the total number of idle channels in cell A 
(cell B). Once again, for space considerations, we do not 
include the detailed Markov chain model for the channel 
reservation scheme (details are shown in [7]). 



It is instructive to intuitively compare the channel car- 
rying and reservation schemes. There are two main dif- 
ferences. First, because of the ?,-channel assignment, the 
number of local channels in each cell is M' in the reserva- 
tion scheme instead of M in the carrying scheme, where 
M' = N/r. The difference d is given by 

d= M'-M = 
N 

r(r+l)' 

which is the cost we pay for channel mobility. Clearly, 
when the reuse factor r is large, this difference is marginal. 
Second, because of channel reservation, new calls have to 
be blocked when the number of occupied local channels ex- 
ceeds a threshold K in the channel reservation scheme. The 
arrival rate is then reduced from An + A/, to A&, which is 
a disadvantage of the reservation scheme compared to the 
channel carrying scheme. Therefore, when we set K = M, 
the number of channels accessible by new arrivals is roughly 
the same for the channel carrying and reservation schemes, 
since if the number of occupied local channels in a cell 
reaches K (or M), any new call in the reservation (or car- 
rying) scheme is now blocked. Thus, the new call blocking 
probabilities would be close for both schemes in the case. 
On the other hand; in the reservation scheme, there are 
M' — K channels dedicated for the use of handoff calls, 
while in the carrying scheme, although there are no chan- 
nels dedicated for handoff calls, the maximum number of 
channels that can be carried into a single cell is M (= ^xf) 
which is larger than M' — K (= r/^L1\)- Hence, by appro- 
priately taking advantage of the stochastic traffic fluctua- 
tion in the different cells, we expect that channel carrying 
would be more effective in serving handoff calls. 

B. Numerical Examples 

In this section, we provide numerical results, based on 
analysis and simulation, to compare the performance of 
the channel carrying scheme and the reservation scheme. 

To obtain the analytical results we use the two-cell model 
of Figure 5(b). We then obtain values for the new call 
blocking probability P/,N and the handoff blocking proba- 
bility Pi,H under various traffic parameters, using the ana- 
lytical method outlined in Section IV-A. 

In addition to computing the performance measures us- 
ing our Markov chain model, we also simulate the system 
under the carrying and reservation schemes. Our simu- 
lation consists of a 120-cell linear cellular system. The 
boundary cells on the two sides are then connected to each 
other to avoid the "edge" effect at the boundaries. We as- 
sume a Poisson arrival process with rate An for new calls 
in each cell, and exponentially distributed call termination 
times with mean 1/^rj- The time duration between the ar- 
rival of a user at a cell and the instant of a handoff request 
is exponentially distributed with mean A#. Handoff re- 
quests are directed to each of the adjacent cells with equal 
probability. The above processes are assumed independent. 
Since we are interested in the performance of a typical cell, 
the statistics are averaged over all cells.  Each simulation 
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run is started with no users present in the system and is 
terminated after 107 discrete events have occurred. The 
initialization effects can be ignored since we have simulated 
such a large number of iterations. Moreover, the simula- 
tion results shown in this paper are valid for up to 95% 
confidence intervals.3 

In Figure 6 we plot PJJV, and in Figure 7 we plot PbH 
for both the channel carrying and the reservation scheme 
under different traffic loads An, ranging from 4 calls to 13 
calls per unit time. The call handoff rate is A# = 1 call 
per unit time, and the call termination rate is fio — 1 call 
per unit time. 

For the channel carrying case, two values for the reuse 
distance are considered: r = 2, the minimum possible reuse 
distance, and r = 4, a more typical value for the reuse 
distance. Further, in both figures, we have M' = N/r = 15; 
hence, N = 30 when r = 2, and N = 60 when r = 4. 

Note, that in the channel reservation scheme, for a given 
arrival rate, we can vary the threshold K to give us dif- 
ferent values of PIN and PbH-  We find that if we choose 

3 For the simulation results plotted in this paper, the confidence 
intervals are so narrow that we do not explicitly show them in the 
figures. For example, in Figure 6, the confidence intervals for each 
point are narrower than the height of each circle or triangle shown. 



A' = M — N/(r+l), then the values of PbN for the reserva- 
tion scheme are close to those of the carrying scheme. For 
r = 2, we choose K = M = 10, and we can observe in Fig- 
ure 6 that the new call blocking probability (fW) curves 
for the reservation and carrying schemes are in fact very 
close. However, for the same parameters, the call hand- 
off blocking probability (PbH) as shown in Figure 7 is at 
least about one order of magnitude lower in the carrying 
scheme than in the reservation scheme. When the value of 
the reuse distance is increased to r = 4, and we set K = 10, 
the carrying scheme significantly outperforms the reserva- 
tion scheme in terms of both PbN and PbH- This result 
can be observed in Figure 6, where the PbN curve in the 
carrying case is up to one order of magnitude lower than 
in the reservation scheme, and in Figure 7, where the PbH 
curve in the carrying scheme is up to three orders of mag- 
nitude lower than in the reservation scheme. The reason 
the carrying scheme provides a lower PbN curve for r — 4 
is that M - 12 > K, in this case. However, if we choose 
K = M, then, although the PbN curves will be closer, the 
difference in the PbH curves will be even larger. 

We next develop a hybrid channel carrying scheme which 
can be used to maximize performance, under various con- 
straints, by allowing us to vary the number of channels that 
can be carried. 

V. HYBRID CHANNEL CARRYING SCHEME 

A. Description 

In the numerical examples of the previous section, we 
observe that the channel carrying scheme results in a large 
difference between the values of PbH and PbN- I*1 particu- 
lar, when the load is high, the value of PbN is much higher 
than that of PbH■ For example, for A„ = 13 and r = 4, the 
value of PbH is only about 10-5 while that of PbN is greater 
than 10"1. This observation suggests that our channel car- 
rying scheme excessively favors handoff requests over new 
calls and could, under certain scenarios (e.g., when Xh/ßo 
is very small), perform even worse than the channel reser- 
vation scheme. The authors in [2] have also studied a hy- 
brid type of idea to address similar channel assignment 
problems. We next present our hybrid scheme that allows 
trading off potential handoff blocking for availability of idle 
channels for new calls. 

Recall that in the (r+l)-channel assignment scheme, the 
number of channels assigned to each cell is M = N/(r+l), 
and every channel can be carried either to the left or to 
the right. On the other hand, in the r-channel assignment 
scheme, the number of channels assigned to each cell is 
N/r, but none of the channels can be carried to foreign 
cells. In our hybrid scheme, we divide the total number 
of channels N into two distinct groups of size N\ and N2, 
such that 

N = Ni + N2. 

The Ni channels are assigned according to the r-channel 
assignment scheme, and cannot be carried to foreign cells. 
The N2 channels, however, are assigned according to the 
(r + l)-channel assignment scheme, and can be carried ei- 

ther to the left or to the right, just as in the previous 
channel carrying scheme. Therefore, in the hybrid scheme, 
each cell is assigned 

Mh 
Nj   |    N2 

r       r + 1 

channels, where the two terms in the sum corresponds to 
the two groups of channels. As before, the N2/(r + 1) 
movable channels are themselves divided into two types: 
left and right. 

The hybrid scheme above defines a family of channel as- 
signments that encompasses both the pure r- and (r + 1)- 
channel assignment schemes. Specifically, JVi = 0 corre- 
sponds to the (r + l)-channel assignment scheme, while 
N2 — 0 leads to the r-channel assignment scheme. The N2 

channels allow us to trade off the ability to carry (and hence 
avoid handoff blocking) with a reduced number of channels 
available to each cell. In particular, the number of chan- 
nels that we sacrifice in using (r + l)-channel assignment 
instead of r-channels assignment is 

dh 
N2 
r 

N2 

r+ 1 
N2 

r+ 1 

The parameter dh serves as a design parameter that we 
can adjust to balance the requirements of the performance 
measures PbN and PbH, analogous to the threshold param- 
eter K in the channel reservation scheme. The larger the 
value of dh in the hybrid scheme, the more we favor hand- 
off calls because there are more movable channels. Hence, 
as dh increases, we expect PbH to decrease and PbN to 
increase. A similar observation holds for the design pa- 
rameter K in the reservation scheme. Also note that, as 
in the original channel carrying case, for a fixed number 
of channels N2 that are allowed to move, the price we pay 
for the (r + l)-channel assignment scheme (in terms of dh) 
decreases with increasing r. 

In the next section we provide numerical (both simula- 
tions and analysis) results comparing the carrying scheme 
with the reservation scheme for various performance mea- 
sures. 

B. Numerical Examples 

For the purpose of analytical evaluation, we adopt the 
two-cell model and make the same assumptions here as 
we did in Section IV-B. The resulting Markov chain has 
exactly the same structure as before, the only difference 

being that we substitute mh = 2(7+1) in Place of m' We can 

then solve for the steady state probabilities in the Markov 
chains for the hybrid and reservation schemes, and compute 
PbH and PbN as before. Also, as in Section IV-B, for our 
simulation study we use a 120 cell linear cellular system 
and we plot the results together with those obtained from 
our Markov chain model. 

B.l Utilization versus An 

From the point of view of a network provider, a useful 
parameter of interest is the normalized channel utilization, 
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7 , defined as 

average number of users in one cell 
7 = total number of available channels in one cell' (2) 

where the total number of available channels in one cell 
is M' = N/r. The parameter 7 is directly related to the 
revenue of a cellular network because it incorporates both 
new and handoff calls. To compute 7 for the hybrid scheme 
we use the equation 

1    ^\ ^\    mh     1 
7=M7£E   £   ^.(Mh-i) + {Mh-j)]Pid,k 

i—0 j=0 k — — rrih 

and for the reservation scheme, 

1    M' M' 

i=0.;' = 0 

where Pij are the state transition probabilities in the cor- 
responding Markov chain, using the two-cell model, for the 
reservation scheme [7]. 

To plot the values of 7 under varying loads for the hybrid 
scheme, we define the optimization problem 

maximize 
dh 

subject to PbH < H„ (3) 

Once again, we define a similar optimization problem for 
the reservation scheme by replacing the decision variable 
dh by K. 

In Figure 8 we plot values of 7 under varying An. The 
parameters used for this figure are: A# = 1, //o = 1, 
M' = 15, Hmax = 10-4. The hybrid scheme achieves 
uniformly higher values of 7 under various loads. The 
difference between the hybrid and reservation schemes is 
most apparent at high loads. At such loads, a low value 
of K is required in the reservation scheme to maintain the 
QoS constraint on PbH> thus resulting in a low value of 
7.   On the other hand, due to the mobility of channels 

Fig. 9. Plot of optimal 7 versus \„ for the problem defined in 
Equation (3), for various values of r. The parameters used in 
this figure are: N/r = 30, \JJ = 1, pa = 1, Hmax = 10~4. 

in the hybrid scheme, the sacrifice in the number of local 
channels to maintain the QoS constraint on P^JJ is not as 
great. When r = 4, the channel utilization for the channel 
carrying scheme at high loads is over 50% more than the 
reservation scheme. Further, this advantage will be even 
more significant as r increases. An interesting observation 
made in Figure 8 is that j does not monotonically increase 
with An. The reason is that the tuning parameter K for 
the reservation scheme and dh for the carrying scheme can 
take on only discrete values. For example, for a particu- 
lar value of K and A„, the maximum utilization (7) may 
be achieved at a blocking probability Pw which is much 
less than the constraint 10-4. Then, when we increase An, 
this constraint is still met without K being changed, and 
therefore the utilization 7 is increased. However, eventually 
when An is large enough, K will have to be decremented to 
satisfy the constraint, thus resulting in a lowered capacity 
for new calls and a drop in the utilization. 

To study the effect of changing the value of r, in Figure 9 
we plot the optimal values of 7 versus An for various values 
of r: 4, 8, and 00. The traffic parameters we use here are: 
M' = 30, A# = 1, no = 1. The constraint is Hmax = 10-4. 
For comparison, we also include a plot for the reservation 
scheme in Figure 9. Note that, as expected, the channel 
utilization is highest when r = 00, in which case the opti- 
mal value of dh is 0. We observe that even for moderate 
values of r (e.g., r = 8), the utilization levels achieved are 
close to the maximum value (achieved with r = 00), while 
the utilization levels achieved by the reservation scheme are 
significantly lower. 

B.2 Protocol Complexity 

In this section, we investigate the protocol complexity 
of the channel carrying scheme. Recall from the algorithm 
description in Section III that the complexity associated 
with channel carrying mainly includes signaling between 
neighboring cells and channel swapping within a local cell. 
For illustration, we consider the optimum hybrid channel 
carrying schemes obtained under varying A„ in Figure 8, 
and quantitatively estimate, via simulations, the number of 



intercellular signals that are transmitted and the number 
of times channel swapping occurs. 

We first estimate the expected number of times that in- 
tercellular signals are sent to serve a mobile user over the 
duration of its call. We do this by dividing the total num- 
ber of handoff requests that have been submitted in the 
simulation to the total number of call arrivals. Here we 
count all handoff request signals, including those that are 
not granted. We find that the expected number of handoff 
requests per call arrival does not exceed 0.3 in all the cases 
shown in Figure 8. 

We then estimate the expected number of times that 
channel swapping is needed to serve a mobile user during 
the duration of the entire call. This can be done by di- 
viding the total number of times that channel swapping is 
observed in the simulation to the total number of call ar- 
rivals. We find that the maximum number of times channel 
swapping is needed per call arrival is less than 0.1 for the 
hybrid carrying schemes in Figure 8. These results sug- 
gest that the overhead required to implement the channel 
carrying scheme is not significant. 

B.3 Comparison with Channel Borrowing Scheme 

The channel carrying scheme reduces the handoff block- 
ing probability by allowing channel mobility. Thus, it can 
be viewed as a simple dynamic channel assignment scheme. 
The most attractive feature of the channel carrying scheme 
is its simplicity compared with most dynamic channel as- 
signment schemes which adopt more complex coordination 
or power control. The channel borrowing scheme [13] is 
representative of another relatively simple dynamic chan- 
nel assignment scheme. We next compare the performance 
and complexity of these two schemes. 

To treat the call handoff problem, we modify the channel 
borrowing scheme as follows. Consider again the linear cel- 
lular system in Figure 1. Suppose that the fixed channel as- 
signment scheme is employed and each cell is assigned N/r 
channels, which are called the permanent channels of that 
cell. Similar to the channel reservation scheme, a thresh- 
old Kb is set in each cell to protect handoff calls—new 
calls can be accepted only if (1) the number of channels 
currently used in the cell is below that threshold; and (2) 
there is an idle channel available in the cell. The channel 
borrowing mechanism is used to further prioritize hand- 
off calls. In particular, suppose a call, using a permanent 
channel of cell A, moves from cell A to cell B, and there 
is no idle channel currently available in cell B.4 Instead of 
blocking this handoff request, cell B attempts to borrow a 
permanent channel from its neighbors (cells A and C). A 
channel can be borrowed from cell A to cell B, only if (1) 
it is not locked in cell A; and (2) it is not being used in 
cell A' (recall that cells A' and A are assigned the same set 
of permanent channels). Once a channel is borrowed from 
cell A to cell B, the same channel is locked in cell A', i.e., 
it cannot be used in cell A' or lent to any neighbor of cell 

4 If cell A is currently holding a channel previously borrowed from 
cell B, then we swap channels and allow the handoff call to take that 
borrowed channel back to cell B. 

A'. A similar operation can be applied when borrowing a 
channel from cell C. Note that channel locking potentially 
degrades reuse efficiency. 

Compared with the channel carrying scheme, the above 
channel borrowing scheme involves more complexity. To 
borrow channels from cell A, cell B has to communicate 
with both cells A and A' to determine the usage and lock- 
ing status of all permanent channels in those cells. Clearly, 
this intercellular signaling overhead in the channel borrow- 
ing scheme is more significant than that required in the 
channel carrying scheme. Also, since cells B and A' are 
not adjacent, communication between both cells could ex- 
perience large latency, which is undesirable when respond- 
ing to handoff requests. However, we note that the channel 
borrowing scheme does not adopt channel division as in the 
carrying scheme (see Figure 4). Thus, the channel borrow- 
ing scheme would require less channel swapping.5 

We next compare the performance of the channel carry- 
ing, borrowing, and reservation schemes for the optimiza- 
tion problem (3). The decision variable for the channel 
borrowing scheme is Kb, which is similar to K in the reser- 
vation scheme. For the sake of comparison, we investigate 
the performance of the channel borrowing scheme only via 
simulation. In Figure 10 we plot the optimal channel uti- 
lization 7 versus varying An for the three handoff schemes. 
The parameters used for this figure are the same as for 
Figure 8. In this figure, we simply replot the simulation 
results for the channel carrying and reservation schemes 
from Figure 8, and compare them with those obtained by 
the channel borrowing scheme. We observe that when the 
traffic load is light, the performance of all three schemes 
is virtually the same. When the load is increased slightly, 
the channel borrowing scheme allows a higher utilization 
than the carrying scheme. However, as the load is fur- 
ther increased, the channel utilization for the borrowing 
scheme drops. This is because channel locking degrades 
the reuse efficiency. To favor one current handoff request, 
the channel borrowing scheme may block two other po- 
tential handoff requests in the future. This adverse effect 
becomes more severe when the traffic load is high. The ob- 
servation agrees with a common concern about the channel 
borrowing scheme that it would even perform worse than 
the fixed channel assignment scheme at a high traffic load 
[6]. 

B.4 Relative invariance of the performance measures PbN 
and PbH over a large range of \H 

In all the above numerical examples, we use the same 
value of XH, i.e., XH = 1- We now investigate the effect 
of varying XH on performance measures. Intuitively, it is 
obvious that when the handoff rate is very small compared 
to the new call arrival rate and service rate, handoff calls 
rarely occur, and thus the handoff blocking probability is 
small. On the other hand, when users move from cell to 
cell very rapidly, XH tends to infinity. It can be shown that 

5 If we allow more intercellular coordination overhead, the channel 
carrying scheme also does not require channel division, and would 
have less channel swapping and better system performance. 
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the handoff blocking probability also tends to zero in this 
case (see [12]). But, we observe that for a broad range of 
values of XH (say, from 1 to 10), the performance measures 
PbN and Pin are not sensitive to changes in XH- 

For illustration, in Figure 12, we plot PbN and PbH versus 
\jl for both the reservation and carrying schemes with r = 
2 and r = 4. We can see that the PbN curve in Figure 12 
is quite flat over a wide range of XH■ Further, the relative 
variation of the PbH curve in Figures 12 is small for medium 
values of XH, while PbH decreases dramatically at either 
end of small or large XH- Based on these observations, we 
use XH = 1 in all the above numerical comparisons and 
expect that the conclusions and observations made there 
can be extended to traffic conditions with other values of 
XH- 

B.5 Correlated/Nonuniform Traffic 

So far, we have considered a commonly used traffic model 
for the cellular network, where the new call arrival pro- 
cesses for different cells are assumed to be uniform and in- 
dependent. However, in a real cellular system, traffic could 
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Fig. 13.   Roaming Hot Spot Traffic Model 

be correlated among cells. For example, if a cell is experi- 
encing a high traffic load, it is likely that its neighboring 
cells also experience a high traffic load. The earlier traffic 
model does capture this effect to a certain extent. For ex- 
ample, recall that the handoff rate between two neighboring 
cells is assumed to be directly proportional to the number 
of users in the handoff originating cell. Thus, a cell with a 
large number of users has a high outgoing handoff rate, and 
will eventually increase the traffic load in its neighboring 
cells. However, we note that our model does not reflect the 
correlation among new call arrivals. 

To investigate the performance of the channel carrying 
scheme with the correlated/nonuniform traffic effect, in this 
section we consider a roaming hot spot model, as shown in 
Figure 13. Again, we assume that new calls arrive accord- 
ing to a Poisson process in each cell. However, the arrival 
rates in all the cells are not assumed to be the same any- 
more. Specifically, the new call arrival rate is equal to A° in 
each cell in the network, except at a hot spot which covers 
three contiguous cells. The new call arrival rate in a cell 
covered by a hot spot is equal to An, where A„ > A°. We 
allow the hot spot to roam in the system. For example, in 
Figure 13, the hot spot covers cells B, C, and D. After 
an exponentially distributed random duration with mean 
1//3, the hot spot moves leftward (or rightward, with equal 
probability) and covers cells A, B, and C (or cells C, D, 
and E, respectively). This process is repeated. 

This roaming hot spot model simulates the transient 
nonuniform effect in cellular traffic. Since the hot-spot 
roams, a cell whose neighboring cell is in the hot spot will, 
with high probability, soon experience the high new ar- 
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rival rate. Further, the traffic load in the middle cell of 
the hot spot is highly correlated with both its neighboring 
cells, since they are always under heavy traffic load con- 
dition simultaneously. In this way, we capture the traffic 
correlation among cells. 

Note that because of the nonuniform traffic load, the per- 
formance varies for different cells, and it would be hard to 
define an appropriate optimization problem for the entire 
system as we did before. To emphasize the hot spot ef- 
fect and simplify the performance comparison between the 
channel carrying and reservation schemes, we next focus on 
the statistics in the middle cell of the hot spot, and plot 
the simulation result of handoff blocking probability under 
varying load conditions.6 Specifically, we fix r = 2, no = 1, 
\H = 1, A° = 7, and N/r = 15. In the reservation scheme, 
we set K = 10. In the carrying scheme, we simply set 
N2 = N. Similar to Figure 6, we find from our simulation 
results that in this case, the average new call blocking prob- 
abilities for the channel carrying and reservation schemes 
are very close when r = 2. Thus, we only compare the 
handoff blocking probabilities. In Figure 14, we plot PhH 

in the middle cell of the hot spot versus varying An. In 
Figure 15, we plot the average PbH of all the cells. Here we 
consider three cases for ß (ß = 5.0, ß = 0.2, and ß - 0). 
The case ß = 5.0 indicates that the hot spot is moving 
rapidly, while the case ß = 0.2 indicates that the hot spot 
is moving very slowly and ß = 0 represents the case of 
a stationary hot spot. Similar to our earlier observation, 
we find that the channel carrying scheme outperforms the 
reservation scheme significantly in the roaming hot spot 
traffic model. It is also interesting to note that when the 
hot spot moves quickly, the performance curves are quite 
flat, because the hot spot effect can indeed be smoothed 
out effectively. However, when the hot spot moves slowly, 
the congestion at the hot spot accumulates and increases 
the handoff blocking probability. 

6 Note that since the hot spot moves, in our simulation, we track the 
location of the middle cell at the hot spot, and record the associated 
statistics. 
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Fig. 16. In a hexagonal cell the movable channels are divided into six 
different groups, where channels from each group can be carried 
into a particular (immediate) neighboring cell. 

VI. AN EXTENSION TO THE PLANAR (2-D) CASE 

The linear (1-D) case described in the previous sections 
is important in its own right. For example, it is useful for 
modeling handoff scenarios on highways and rural areas. 
However, to handle cellular systems in metropolitan envi- 
ronments, we need to extend our carrying scheme to the 
2-D case. 

A.  Channel Assignment 

In the planar or 2-D case, the cellular configuration is 
usually assumed to be hexagonal. This means that the 
entire area of interest is covered with equal sized hexagonal 
cells. Here, the minimum reuse distance D is the minimum 
physical distance between the centers of two cells using the 
same channel set. As in the linear case, the minimum reuse 
factor R is the minimum number of distinct channel sets 
necessary to cover the entire area, subject to co-channel 
interference constraints. In this case R can be directly 
determined from D by 

R = (l/3)(D/Pf (4) 

where p is the radius of a single cell. The reuse factor R can 
only take on integer values as generated by the sequence 
(i -f- j)2 - ij, with i and j being integers. 

To allow for channel carrying in this type of system, we 
need to assign channels in a similar way to the (r + 1)- 
channel assignment scheme in the linear case.   The main 
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Fig. 17.   Channel assigment to allow carrying for fi = 3. 

difference in this case is that users can issue handoff re- 
quests to six different neighboring cells, instead of just two. 
Therefore, we partition our movable channels into six dif- 
ferent groups (or sets), where each group of movable chan- 
nels can be carried into a particular neighboring cell (or 
"direction"), as shown in Figure 16. For example, channels 
belonging to channel-set A can be carried to the immedi- 
ate neighboring cell in the "north" direction, channels be- 
longing to channel-set B can be carried to the immediate 
neighboring cell in the "north-east" direction, etc. Instead 
of describing the details of the channel assignment scheme 
as we did in the 1-D case, we will simply illustrate the basic 
idea with an example using Figure 17. 

In Figure 17, we show how channels can be assigned to 
allow carrying for the R = 3 case. To ensure that the 
co-channel interference constraints are not violated when 
channel carrying occurs, we cannot use the minimum reuse 
factor R, but must instead use a larger reuse factor R. In 
this case the minimum reuse factor is R = 3, but we need 
to use an increased reuse factor of R = 5 to allow for car- 
rying. In Figure 17, channel sets in each cell are denoted 
by a capital letter followed by a subscript, e.g., A\. The 
capital letter denotes the "direction" in which a channel 
in that set can be carried according to the designation in 
Figure 16 (e.g., channels belonging to A\ can be moved in 
the "north" direction, since channels belonging to set A in 
Figure 16 can be moved in the north direction). The sub- 
scripts are used to distinguish channel sets between cells. 
Let us now focus on the cell in Figure 17 whose boundary 
is highlighted with dark solid lines, and call it the local cell. 
Further, let us concentrate on how channels belonging to 
A\ in the local cell can be carried. Note that the neigh- 
boring cells of the local cell that use the same channel-set 
Ai have their boundaries highlighted by dark dashed lines. 
Now, in the local cell, if a channel in Ai is carried to its 
immediate neighbor (this can only be its neighbor in the 

north direction, as per our scheme), the assignment ensures 
that there is no extra co-channel interference. In fact the 
distance7 between the immediate neighbor to the north of 
the local cell (in which a channel from set A\ has been car- 
ried), and the closest neighboring cells that use channel-set 
Ai (these are the shaded cells to the north-west and north- 
east of the local cell) is 6/>. Also, from Equation (4), D = 6/> 
(when R = 3), so this distance corresponds to the short- 
est reuse distance possible without additional co-channel 
interference. Similarly, by picking other channel sets in 
the local cell (and their corresponding neighboring cells) 
one can see that the channel assignment shown will allow 
carrying without requiring dynamic global coordination or 
power control techniques. 

We next provide some numerical examples to illustrate 
the performance of the carrying technique for the 2-D case. 

B.  Numerical Examples 

The typical values of the minimum reuse factor when 
ignoring shadowing fading are R = 7 and R = 12 [1]. 
However, when shadowing fading is taken into account, 
the value of the minimum reuse factor R is between 43 
and 61 for high transmission quality, and between 13 and 
16 for low transmission quality [3]. We next provide nu- 
merical examples for R — 12,19,27. As will be shown in 
the examples, our performance improvement over reserva- 
tion increases with larger values of R. The analysis of the 
carrying scheme in the 2-D case using Markov chain tech- 
niques results in a state explosion problem. Therefore, we 
will provide only simulation results in our examples. For 
the simulations, we used a 36-cell configuration, with each 
cell having 6 adjacent neighboring cells. To avoid problems 
at the boundaries of the 36-cell configuration, the cells on 
the boundary of one side of the configuration are connected 
to the cells on the boundary of the other side, as done in 
[6]. 

As before, M' = N/R denotes the number of channels 
in each cell using the reservation scheme. For the carrying 
scheme this number will be reduced to M. Now, \H de- 
notes the handoff rate of each user in a cell to any of the six 
adjacent neighboring cells, An denotes the new call arrival 
rate in a cell, l/^o denotes the mean time until a call termi- 
nates. As mentioned in the linear case, the hybrid carrying 
scheme allows us to trade off potential handoff blocking for 
availability of idle channels for new calls and is the appro- 
priate scheme to be used for comparison. Therefore, in all 
of our examples we will compare the reservation scheme 
with the hybrid version of the carrying scheme for the 2-D 
case. 

In Figure 18, we plot the utilization j (defined by Equa- 
tion (2)) versus the new call arrival rate in the optimiza- 
tion problem given by Equation (3). The hybrid scheme 
achieves uniformly higher values of 7 under various loads. 
For R — 27, the channel utilization for the channel carry- 
ing scheme at high loads is about 18% more than in the 
reservation scheme.  Note, once again, that for low values 

7 Distances are always measured between the centers of two cells. 
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of the traffic load, there is virtually no difference in the 
performance of the schemes. 

Let us now try and relate the performance of our scheme 
in the linear and 2-D case. If one were to observe the 
topology of the 2-D case for R = 27, it roughly corresponds 
to r = 5 in the linear case. However, the performance 
gains even for r = 4 in the linear case are better than 
the corresponding gains for R = 27 in the 2-D case. The 
main reason is the need to divide the movable channels into 
six distinct groups as opposed to only two, in the linear 
case. This means that the number of movable channels 
in each direction in the 2-D case is much fewer than in 
the linear case. However, in many real situations, mobile 
users move only in four directions instead of six. If such is 
the case for the system of interest, we may divide up the 
movable channels into four, rather than six, distinct groups 
for the carrying scheme, which will help increase the gain 
in utilization. 

VII. CONCLUSIONS 

We have presented a novel channel carrying scheme to 
address the problem of handoffs in mobile cellular systems. 
Our basic idea is to allow mobile users to carry their current 
channels into new cells under certain conditions. In order 
to avoid co-channel interference, due to channel movement, 
we develop the (r + l)-channel assignment scheme for lin- 
ear cellular networks. This affords us channel mobility at 
the expense of some capacity. An attractive feature of the 
channel carrying scheme is that it does not require complex 
power control techniques or global channel coordination, 
which simplifies its implementation. 

We develop a two-cell model to analyze our channel car- 
rying scheme and the traditional channel reservation tech- 
nique for the linear cellular system. We find that for the 
linear case, even when considering the minimum possible 
reuse factor r = 2, the channel carrying scheme outper- 
forms the reservation technique. We then propose a re- 
finement to the channel carrying scheme, called the hybrid 
scheme, which provides a useful design parameter dh that 

allows us to optimize various parameters of interest. We 
again find that our scheme uniformly and significantly im- 
proves the system performance, in some cases resulting in 
over 50% better network utilization than the channel reser- 
vation scheme in the linear case. We also illustrate how the 
channel carrying scheme can be extended to the 2-D case. 
We then provide examples comparing it with the reserva- 
tion scheme for the classical hexagonal cell configuration. 
We show that our scheme outperforms the channel reser- 
vation scheme over a wide range of parameters. 

In most cases, we have assumed Poisson new call arrivals 
that are uncorrelated from cell to cell, and symmetrical and 
memoryless handoff directions. However, traffic in a real 
cellular system could be quite different. To investigate the 
effect of uncorrelated and nonuniform traffic, we developed 
a simple hot spot model and compared the channel carrying 
scheme with the reservation scheme under this model. We 
find that the channel carrying scheme still outperforms the 
reservation scheme in this case. For future work it would 
be interesting to model user mobility (roaming patterns) 
based on observations of actual systems. In this case, the 
performance improvement of the channel carrying scheme 
could be quite different from that reported in this paper. 
If the traffic were to exhibit strong deterministic correla- 
tion -between neighboring cells, it may be more difficult 
to take advantage of channel carrying, and more complex 
dynamic channel allocation schemes (such as the maximal 
packing scheme [9]) may be warranted. In these cases it 
would be interesting to analytically quantify the trade-offs 
between complexity and performance going from the carry- 
ing scheme to the more dynamic and complicated channel 
allocation schemes. 
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Abstract 
We present a new scheme that addresses the call 

handoff problem in mobile cellular networks. Effi- 
ciently solving the handoff problem is important for 
guaranteeing Quality of Service (QoS) to already ad- 
mitted calls in the network. Our scheme is based on 
a new concept called channel carrying: when a mo- 
bile user moves from one cell to another, under cer- 
tain mobility conditions, the user is allowed to carry 
its current channel. We propose a new channel assign- 
ment scheme to ensure that this movement of channels 
will not lead to any extra co-channel interference or 
channel locking. In our scheme, the mobility of chan- 
nels relies entirely on localized information, and no 
global coordination is required. Therefore, the scheme 
is simple and easy to implement. We further develop 
a hybrid channel carrying scheme that allows us to 
maximize performance under various constraints. 

We provide numerical results comparing our scheme 
with the traditional channel reservation types of tech- 
niques. We find that our scheme outperforms the 
reservation scheme over a broad range of traffic pa- 
rameters. 

1     Introduction 
The use of cellular systems is a popular means for 

enhancing the capacity of wireless communication net- 
works. In such a system, the service area is divided 
into cells, and channels are reused among those cells. 
A channel can be thought of as a generic network re- 
source; for example, a frequency band in FDMA, a 
time-slot in TDMA, or a specific spread spectrum code 
in CDMA. This definition is consistent with that in 
[4]. Channels that are used in one cell cannot be used 
in other cells that are closer than the minimum reuse 
distance. Handoff occurs when a mobile subscriber 
moves from one cell to another. A handoff call may 
be blocked if there is no free channel in the new cell. 
However, studies have shown that blocking a handoff 
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call is less desirable than blocking a new call. There- 
fore, specific schemes have been developed to prioritize 
handoff calls. Two prioritization schemes have been 
commonly studied in the literature [1]. They are: 

(i) Channel reservation schemes: In this type of 
schemes, a number of channels are reserved solely for 
the use of handoff, allowing both handoff and new calls 
to compete for the remaining channels [5]. Specifi- 
cally, in each cell a threshold is set, and if the number 
of channels currently used in the cell is below that 
threshold, both new and handoff calls are accepted. 
However, if the number of channels used exceeds this 
threshold, an incoming new call is blocked and only 
handoff calls are admitted. 

(ii) Queueing schemes: In this type of schemes 
handoff requests are queued, and may be later admit- 
ted into the network in case channels free up [2]. 

The above two schemes can also be integrated to- 
gether to improve the handoff blocking probability and 
the overall channel utilization. The scheme we propose 
in this paper is also readily integrated with the queue- 
ing schemes. Therefore, we compare our scheme only 
with the reservation scheme. 

Our method for treating the handoff problem stems 
from the following simple idea. A user requesting a 
handoff always occupies a channel in its current cell. 
Therefore, if that channel could be carried into the new 
cell, the handoff request would not be blocked. From a 
practical point of view this is not difficult to achieve. 
For example, in an FDMA based system, suppose a 
user requesting handoff to some cell A communicates 
over a frequency band x that cell A is not allowed to 
use. Now, if normal handoff is not possible the user 
(or its current base-station) could signal cell A giving 
it permission to communicate over channel x with it. 
In a similar way, channels can be carried in CDMA 
and TDMA systems. 

However, when a channel is allowed to move into 
another cell, it shortens the reuse distance and may 
violate the minimum reuse distance requirement [1, 3]. 
To solve this problem, we propose a new channel as- 
signment method that allows channels to be "carried" 
into a neighboring cell. Furthermore, with an a priori 
agreement on channel movement, channel coordina- 
tion can be achieved locally. This helps to significantly 



h 

Figure 1: Linear Cellular System 

I- '- H 

Channel Channel 
Sei I        Sei II 

Channel 
Set I 

Channel Channel Channel Channel 
Sei 1       Sei 2       *••       Sell        Sc! 2 

Figure 2: r—Channel Assignment 

simplify the implementation. The new handoff scheme 
proposed in this paper is called channel carrying. 

We next describe how the channels are assigned for 
the channel carrying scheme, and then present our ba- 
sic handoff algorithm. 

2    Channel Assignment 
For simplicity, we describe our channel carrying 

scheme using a linear cellular system model. In this 
system, cells (or base stations) are arranged in a linear 
configuration, as shown in Figure 1. Let N denote the 
total number of distinct channels that are available in 
the cellular system. Two cells can use the same set 
of channels as long as they are at least r cells apart. 
This distance r is called the minimum reuse distance 
or reuse factor. In the conventional fixed channel as- 
signment scheme, the channels are assigned such that 
the same channels are reused exactly r cells apart, as 
shown in Figure 2. Therefore, the total number of dis- 
tinct channels available to each cell is N/r. We refer 
to this channel assignment as r-channel assignment. 

In our channel carrying scheme, we alleviate block- 
ing due to handoff by allowing calls to "carry" chan- 
nels from one cell to another. However, using r- 
channel assignment, a call that carries a channel to 
an adjacent cell may violate the minimum reuse dis- 
tance requirement. For example, in Figure 1, cells A 
and A' use the same set of channels. Suppose a call 
in cell A uses a channel y, and carries it to cell B. 
Now, if a user arrives in cell A' and uses channel y, 
then the two y channels are only a distance of r — 1 
cells apart, thus violating the minimum reuse distance 
requirement. One way to overcome this problem is to 
have global coordination algorithms that use channel 
locking [3] to ensure that such situations do not occur. 
However, such schemes are computationally expensive 
and therefore difficult to implement [3]. Moreover, 
channel locking also degrades efficiency. 

To ensure that the minimum reuse distance require- 
ment is not violated, we use an (r + \)-channel as- 
signment scheme. In other words, the same channels 
are reused exactly r + 1 cells apart, as shown in Fig- 
ure 3. In this case, the total number of distinct chan- 
nels available to each cell is N/(r + 1). To ensure that 
the same channels do not get closer than r cells apart 
(due to channel carrying), we restrict channel move- 
ment in the following way. Each channel is allowed 
to be carried in only one direction, left or right. This 
restriction thus divides the channels assigned to each 

Figure 3: (r + 1)-Channel Assignment 
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cell into two types. Further, as shown in Figure 4, 
exactly the same division is used in cells that are a 
distance r + 1 apart. Using this (r + l)-channel as- 
signment scheme, and the channel carrying algorithm 
described in the next section, we ensure that there is 
no co-channel interference due to channel movement, 
while avoiding the need for global coordination. 

3    Handoff Algorithm 
3.1     Algorithm Description 

To describe our handoff algorithm, we first focus 
our attention on a particular (arbitrary) cell, which 
we call the local cell. The adjacent cells to the left 
and right of the local cell are called foreign cells. The 
channels that have been assigned to the local cell are 
called local channels, and are divided into two types: 
local-left (LL) and local-right (LR) channels as shown 
in Figure 4. An LL (LR) channel is one that can 
be carried to the left (right) cell during handoff. In 
other words, an LL (LR) channel can be used by a 
call in the local cell as well as in the foreign cell to 
the left (right). A channel from a foreign cell that is 
being used in the local cell is called a foreign channel. 
Foreign channels from the left cell are called foreign- 
left (FL) channels and foreign channels from the right 
cell are called foreign-right (FR) channels. 

Our algorithm can be described in five main parts, 
corresponding to five different possible scenarios: ar- 
rival of a new call, handoff from a foreign cell, handoff 
to a foreign cell, termination of a call, and when a lo- 
cal channel becomes idle. 

3.1.1 Arrival of a new call 

When a new call arrives, we check if there are any idle 
(unused) local channels. If there are, the new call is 
accepted and assigned the idle channel; otherwise, the 
call is rejected (blocked). 

3.1.2 Handoff request from a foreign cell 

When a handoff call request is received from a foreign 
(left or right) cell, we check if there are any idle lo- 



cal channels available. If there are, the handoff call 
is accepted and assigned the idle channel; otherwise, 
the foreign cell is notified that there are no idle local 
channels. 

3.1.3 Handoff to a foreign cell 

For simplicity, suppose a user U in the local cell wants 
to move to the left foreign cell. The handoff operation 
is attempted according to the following order: 

1. If user U is currently using a foreign-left (FL) 
channel, then it simply carries it back to the left 
cell; otherwise, step 2 is initiated. 

2. We check if there is an FL channel being used by 
some other user V in the local cell. If so, user 
U exchanges its channel with user V and then 
executes step 1 above; if not, we perform step 3. 

3. We send a handoff request to the left foreign cell. 
The foreign cell then executes the procedure in 
Section 3.1.2. If the handoff is accepted, user U 
moves to the left cell and releases its own channel; 
if not, step 4 is initiated. 

4. If user U is currently using a local-left (LL) chan- 
nel, then it carries it to the left cell; otherwise, 
step 5 is initiated. 

5. We check if there is an idle LL channel currently 
in the local cell. If so, U releases its own channel, 
grabs the idle LL channel, and carries it to the 
left cell; otherwise step 6 is initiated. 

6. We check if there is an LL channel being used by 
some other user W in the local cell. If so, user U 
exchanges its channel with user W, and executes 
step 4 above. 

7. If all the above conditions do not hold, then the 
handoff cannot be accomplished. Normally, this 
would result in the handoff call being blocked. 

A similar procedure would be applied if a user in 
the local cell wanted to move to the right foreign cell. 

3.1.4 Termination of a call 

When a call U is terminated (either due to the normal 
end of the call, or due to handoff blocking), we first 
check if the channel being used by U is a foreign chan- 
nel. If so, we release the foreign channel and return 
it to its originally assigned cell. Otherwise, U is using 
a local channel—the call is then terminated and the 
channel becomes idle. 

3.1.5 Local channel becomes idle 

This scenario arises in the following situations: 

1. Termination of a call in the local cell. 

2. Handoff from the local cell to a foreign cell with- 
out carrying. 

3. Return of an idle local channel from a foreign cell 
(when a local channel is released in the foreign 
cell and returned to the local cell). 

When a local channel becomes newly idle, we check if 
there is a user V using a foreign channel in the local 
cell. If so, user V is assigned the newly idle local chan- 
nel, and the foreign channel is released and returned 
to its originally assigned cell. 

3.2     Salient Features of the Algorithm 
The following are some of the significant features of 

our algorithm. Again, for simplicity, we focus only on 
handoff from the local cell to the left foreign cell. 

(i) An important feature of our algorithm is that 
no global coordination is necessary, thus facilitating 
implementation. At the same time, the algorithm en- 
sures that there is no co-channel interference due to 
channel movement. 

(ii) In our algorithm, handoff calls have access to a 
larger portion of the system capacity than new incom- 
ing calls. To see this, note that a new call is blocked 
if and only if there is no idle (local) channel in the 
local cell. On the other hand, a handoff request to 
the (left) foreign cell is blocked if and only if all the 
left-local (LL) channels are being used in the foreign 
cell. This occurrence is relatively rare because it re- 
quires that all three of the following conditions are 
simultaneously true: 

(a) All the FL channels are being used by users in 
the left foreign cell. 

(b) All the channels in the left foreign cell are being 
used. 

(c) All the LL channels have been previously carried 
to the left foreign cell. 

It is therefore apparent that in our channel carrying 
scheme, handoff call requests are favored over new call 
requests. Meanwhile, we do not require channels to be 
reserved a priori for handoff calls. This helps increase 
the efficiency of our scheme compared to reservation 
schemes, as demonstrated in Sections 4.3 and 5.2. 

(iii) In our algorithm, we prefer to use local chan- 
nels whenever possible. We refer to this policy as a 
return-as-soon-as-possible policy. For example, when- 
ever a channel becomes idle, we always return the for- 
eign channel (if any) instead of keeping that idle chan- 
nel waiting for a potential call in the local cell. The 
policy serves to protect potential handoff calls, be- 
cause the accumulation of foreign channels may block 
further handoff requests from the foreign cell. 

4    Performance Analysis 
4.1     Channel Carrying Scheme 

In this section we develop a Markov chain model 
to analyze the performance of our handoff algorithm. 
The QoS measures that we are interested in are: 

• PbN, the steady state probability of blocking a 
new call; and 



Figure 5: (a) Linear Cellular system with various traf- 
fic parameters, (b) Two-Cell model with the corre- 
sponding traffic parameters. 

• PbH, the steady state probability of blocking a 
handoff call. 

The system that we are interested in modeling is the 
linear cellular system shown in Figure 5(a). The traf- 
fic is assumed to be symmetrically distributed over all 
the cells, for example, the new call arrival rate at every 
cell is A„. The handoff rates between cells is assumed 
to be directly proportional to the number of users in 
that cell, so if a cell has i users the handoff rate to 
its neighboring cell is i\n, as shown in Figure 5(a). 
Analysis of this entire system is computationally in- 
feasible. Therefore, the performance analysis of call 
handoff schemes in wireless systems is typically done 
by focusing on a single cell which results in a one di- 
mensional Markov chain. However, the one-cell model 
does not accurately capture the essence of our algo- 
rithm. For example, suppose that a user in the local 
cell wants to move to the left foreign cell. Whether 
or not it carries a channel during handoff depends not 
only on the availability of FL and LL channels in the 
local cell but also on whether there is an idle chan- 
nel in the left foreign cell. Hence, the availability of 
channels in adjacent cells is coupled. 

To alleviate difficulties with a one-cell model we 
consider a two-cell model, as shown in Figure 5(b). 
We assume that in each cell A and B, new call re- 
quests arrive according to Poisson processes with rate 
An. The time it takes for each call in a cell to request 
a handoff to the other cell is assumed to be expo- 
nentially distributed with mean 1/A#. Call handoffs 
arrive from outside the two-cell subsystem according 
to a Poisson process with rate A/,. The time until 
a call terminates is assumed to be exponentially dis- 
tributed with mean l//*o- Therefore the time until a 
call leaves the two-cell system (either due to handoff 
or call termination) is exponentially distributed with 
mean l/fi = l/(/zo + A/f). Now, assuming that all of 
the above mentioned processes (new arrival, call hand- 
off request, and call termination) are mutually inde- 
pendent, we can analyze our two-cell system using a 
Markov Chain. 

Recall that the total number of local channels in 
each cell is M = N/(r + 1).   To further simplify the 

Figure 6: Markov Chain for the Channel Carrying 
Scheme using the Two-Cell model. Note that m — 
M/2, aadM = N/(r+l). 

model, we assume that the total number of local chan- 
nels, M, is divided into an equal number, m = M/2, 
of local left (LL) and local right (LR) channels. 

Our Markov chain model is shown in Figure 6. 
To describe the model, let NA G {0,..., M} and 
NB £ {0,..., M} represent the number of idle local 
channels in cell A and cell B, respectively. Next, 
let NB^A £ {-4f,..., 0,..., 4f} represent the fol- 
lowing. If NB-+A > 0, it denotes the number of for- 
eign channels from cell B that are being used in cell 
A. On the other hand, if NB^A < 0, it denotes the 
number of foreign channels from cell A that are be- 
ing used in cell B. Hence, Nß^A{t) can take values 
from -4f to 4f. The triple {NA,NB,NB^A) repre- 
sents the state of the Markov chain. Although there 
are three components in each state, the state transi- 



tion diagram of the Markov chain can be represented 
in a planar fashion. To see this, recall that a for- 
eign channel will move into a cell only when there is 
no idle local channel in that cell. Also, whenever ser- 
vice is terminated, the foreign channel within the local 
cell will be returned immediately. Thus, if we neglect 
the additional time it would take to return or carry a 
channel, it follows that NB^-A > 0 => NA = 0, and 
NB->A < 0 => NB = 0. These equations help restrict 
one degree of freedom thereby resulting in the planar 
or two-dimensional Markov chain shown in Figure 6. 

Note that, because of the symmetric nature of the 
Markov chain, i.e., P{NA — i,Nß = J,NB->A = 
k} = P{NA = j,NB = i,NB^A = -*}, only half 
of the Markov chain is shown in the figure. Let 
PiJik = P{NA - i, NB = j, NB-^A = k} denote the 
steady state probability of the state {NA — i, NB = 
j,Nß^yA = k}. We obtain these probabilities by ex- 
ploiting the above mentioned symmetry and by apply- 
ing standard numerical Markov chain techniques. 

Now observe Figures 5(a) and 5(b) again. In Fig- 
ure 5(b) we have focussed only on cells A and B of 
Figure 5(a). Let the cells to the right of cell B and to 
the left of cell A be called external cells. The handoff 
rate A/, in the two-cell model of Figure 5(a) is actu- 
ally the average of the state dependent handoff rate 
from their neighboring external cells. Averaging over 
all the states, A/, is given by 

M M 

\h = j2(M-i)\HYl E p'.^< (1) 
j—0k = — m 

where m = M/1. Since A/, depends on Pij,k, we it- 
eratively solve the Markov chain. Having determined 
Pi,j,k, we calculate PbN, and PbH as follows: 

m   M — k M-m-1 

^ = E E p°j.fc; PbH = E P{ 0,j,mt (2) 
fc=0 j=0 J=0 

4.2     Channel Reservation Scheme 
In this section we develop a Markov chain model, 

shown in Figure 7, to analyze the system performance 
using the traditional channel reservation scheme. As 
in the channel carrying scheme, we focus on the 
two-cell model shown in Figure 5. The parameters 
Aft, A„, XH, and fj, are defined as before. Since 
no channel movement is allowed, the pair (NA,NB), 
NA € {0,...,M'}, NB € {0,...,M'}, suffices to 
characterize the state of the two-cell system. Here, 
M' = N/r is the total number of distinct channels 
available to each cell, and NA (NB) is the total num- 
ber of idle channels in cell A (cell B). The resulting 
Markov chain is shown in Figure 7. Again, because 
of the symmetric nature of the Markov chain, i.e., 
P{NA = i,NB = j} - P{NA = J,NB = t}, only 
half of the Markov chain is shown in Figure 7.   Let 

Ptj= P{NA = i, NB = j} denote the steady state 
probability of the state {NA - i,NB - j}- Then, as 
in the channel carrying scheme, A/,, the average exter- 
nal handoff arrival rate, is given by: 

-'.    ^ i     r-.    *  ■"-. 
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-f \ \   '   * 
-   *0\  !  ■ s 

'   < \ T    -     \\'"' 

•   i J—-J- 

Figure 7: Markov Chain for the ChanneJ Reservation 
Scheme using the Two-Cell model. Note: M' = N/r. 

M' M' 

A„ = £(M'-;)AH$>,. (3) 
j=0 

Since Aft depends on P<j, we iteratively solve the 
Markov chain in Figure 7. Now PbN and PbH are 
given by 

M' 

PbN 

K M' 

t=o   j=o 
j> PbH 

M' 

(4) 
3=0 

It is instructive to compare the state transition di- 
agrams in Figures 6 and 7. The number of local 
channels in each cell is M' - N/r in the reserva- 
tion scheme (Figure 6) instead of ¥ = N/(r + 1) 
in the carrying scheme  (Figure 7).    The difference 
is d = M' - M N which is the cost we pay 
for channel mobility. Clearly, when the reuse factor 
r is large, this difference is marginal. Also, because 
of channel reservation, new calls have to be blocked 
when the number of occupied local channels exceeds 
a threshold K in Figure 7. Then, the arrival rate is 
reduced from A„ + \h to Xh, which is a disadvantage of 
the reservation scheme compared to the channel car- 
rying scheme. 
4.3     Numerical Results 

In this section, we provide numerical results to com- 
pare the performance of the channel carrying scheme 
and the reservation scheme. 

We use our Markov chain model for computing the 
performance measures PbN and PbH and also simu- 
late the system under the carrying and reservation 
schemes.  Our simulation consists of a 120 cell linear 
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cellular system, such as the one shown in Figure 5(a). 
Since we are interested in the performance of a typical 
cell, the statistics are averaged over all cells. Through- 
out the paper, we find that the simulation and analyt- 
ical results match quite well, which indicates that the 
two-cell model works well in characterizing the behav- 
ior of the algorithm in a linear cellular system. 

In Figure 8 we plot PbN, and in Figure 9, we plot 
PbH for both the channel carrying and the reservation 
scheme under different traffic loads A„, ranging from 
4 calls to 13 calls per unit time. The call handoff rate 
is Xfj = 1 call per unit time, and the call termination 
rate is ßo — 1 call per unit time. 

For the channel carrying case, two values for the 
reuse distance are considered: r = 2, the minimum 
possible reuse distance, and r = 4, a more typical 
value for the reuse distance. Further, in both figures, 
M' = N/r = 15; hence, N = 30 when r = 2, and 
N = 60 when r = 4. 

Note, that in the channel reservation scheme, for 
a given arrival rate, we can vary the threshold K to 
give us different values of PbN and PbH- We find that 
if we choose K — M = N/(r + 1), then the values of 
PbN for the reservation scheme are close to those for 
the carrying scheme. The reason for this is that if the 
number of occupied local channels in a cell reaches K 
(or M), any new call in the reservation (or carrying, 
respectively) scheme is now blocked.   For r = 2, we 

choose K = M = 10, and we can observe in Figure 8 
that the new call blocking probability (PbN) curves 
for the reservation and carrying schemes are in fact 
very close. However, for the same parameters, the call 
handoff blocking probability (PbH) as shown in Fig- 
ure 9 is at least about one order of magnitude lower in 
the carrying scheme than in the reservation scheme. 
When the value of the reuse distance is increased to 
r = 4, and we set K = 10, the carrying scheme signifi- 
cantly outperforms the reservation scheme in terms of 
both PbN and PbH ■ This result can be observed in Fig- 
ure 8, where the PbN curve in the carrying case is up 
to one order of magnitude lower than in the reserva- 
tion scheme, and in Figure 9, where the PbH curve in 
the carrying scheme is up to three orders of magnitude 
lower than in the reservation scheme. 

We next develop a hybrid channel carrying scheme 
which attempts to maximize performance, under var- 
ious constraints, by allowing us to vary the number of 
channels that can be carried. 

5    Hybrid Channel Carrying Scheme 
5.1    Description 

In the numerical examples of the previous section, 
we observe that the channel carrying scheme results 
in a large difference between the values of PbH and 
PbN- In particular, when the load is high, the value 
of PbN is much higher than that of PbH- For exam- 
ple, for A„ = 13 and r = 4, the value of PbH is only 
about 10-5 while that of PbN is greater than 10-1. 
This observation suggests that our channel carrying 
scheme excessively favors handoff requests over new 
calls. We next present a hybrid scheme that allows 
trading off potential handoff blocking for availability 
of idle channels for new calls. 

Recall that in the (r + l)-channel assignment 
scheme, the number of channels assigned to each cell 
is M = N/(r + 1), and every channel can be carried 
either to the left or to the right. On the other hand, 
in the r-channel assignment scheme, the number of 
channels assigned to each cell is N/r, but none of the 
channels can be carried to foreign cells. In our hy- 
brid scheme, we divide the total number of channels 
N into two distinct groups of size Ni and N2, such 
that N = Ni + JV2 - The Ni channels are assigned ac- 
cording to the r-channel assignment scheme, and can- 
not be carried to foreign channels. The N2 channels, 
however, are assigned according to the (r+ l)-channel 
assignment scheme, and can be carried either to the 
left or to the right, just as in the previous channel car- 
rying scheme. Therefore, in the hybrid scheme, each 
cell is assigned 

Mhybrid = 1 —7 y r       r + 1 (5) 

channels, where the two terms in the sum corresponds 
to the two groups of channels. As before, the N2/(r + 
1) channels of the second type are themselves divided 
into two types: left and right. 

The hybrid scheme above defines a family of chan- 
nel assignments that encompasses both the pure r- 



and (7- + l)-channel assignment schemes. Specifically, 
Ni = 0 corresponds to the (r+ l)-channel assignment 
scheme, while N2 = 0 leads to the r-channel assign- 
ment scheme. The N2 channels allow us to trade off 
the ability to carry (and hence avoid handoff blocking) 
with a reduced number of channels available to each 
cell. In particular, the number of channels that, we 
sacrifice in using (r + l)-channel assignment instead of 
7--channels assignment is 

^hybrid 
VV2 
r 

N2 

r+ 1 
1 N2 

r+ 1 (6) 

Thus, dhybrid serves as a design parameter that we 
can adjust to balance the requirements of the per- 
formance measures PbN and PbH, analogous to the 
threshold parameter K in the channel reservation 
scheme. The larger the value of dhybrid in the hy- 
brid scheme, the more we favor handoff calls because 
there are more movable channels. Hence, as dhybrid 
increases, we expect PbH to decrease and PbN to in- 
crease. A similar observation holds for the design pa- 
rameter K in the reservation scheme. Also note that, 
as in the original channel carrying case, for a fixed 
number of channels N2 that are allowed to move, the 
price we pay for the (r + l)-channel assignment scheme 
(in terms of dhybTid) decreases with increasing r. 

5.2    Numerical Results 
For the purpose of performance evaluation, we 

adopt the two-cell model and make the same assump- 
tions here as we did in Section 4.3. The resulting 
Markov chain has exactly the same structure as in 
Figure 6, the only difference being that we substitute 

mhybrid = 2(7+1) in Place of m' We can then solve 

for the steady state probabilities in the Markov chains 
for the hybrid and reservation schemes, and compute 
PbH and PbN as before. Also, as in Section 4.3, for our 
simulations we use a 120-cell linear cellular system. 

We now provide plots of PbN under varying load 
conditions for the hybrid and reservation schemes. 
The performance measures depend on the parameters 
dhybrid and K in the hybrid and reservation schemes, 
respectively. To meaningfully compare our hybrid 
scheme with the reservation scheme, we determine the 
optimal values of PbN for the two schemes, given a 
constraint on PbH- Therefore, in the hybrid scheme, 
to appropriately choose dhybrid, we consider the fol- 
lowing optimization problem: 

minimize   PbN,      subject to   PbH < Hmax,      (7) 
dhybrid 

where Hmax denotes a prespecified maximum level for 
PbH ■ A similar optimization problem can be defined 
for the reservation scheme, where the decision variable 
dhybrid above is replaced with the threshold parameter 
K. For a fair comparison of our hybrid scheme with 
the reservation scheme, we calculate the optimal val- 
ues of PbN for the two schemes, given the same Hmax. 
The optimal values can be computed numerically us- 
ing the Markov chains in Figures 6 and 7. Figure 10 

Figure 10: Plot of optimal PbN versus A„ for the prob- 
lem defined in Equation (7). 
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Figure 11: Plot of optimal An versus PbH for the prob- 
lem defined in Equation (8). 

shows plots of the optimal values of PbN for the reser- 
vation and hybrid schemes under varying A„. For this 
figure we have used the following parameters: XH = 1, 
Ho = 1, M' = 15. Therefore, N = 30 for r - 2, and 
N = 60 for r = 4. For the constraint on PbH, we used 
Hmax — 10-4, a typically desirable constraint for the 
handoff blocking probability. We can see that the hy- 
brid scheme achieves uniformly lower values of PbN 
than the reservation scheme. As expected, increasing 
the value of r further decreases PbN in the channel 
carrying case. 

Next, in Figure 11, we plot a graph in which we 
compare the maximum new call arrival rate A„ that 
can be admitted by the carrying scheme and the reser- 
vation scheme for various handoff blocking probabili- 
ties PbH ■ More precisely we define the following opti- 
mization problem for the channel carrying scheme: 

maximize 
dhybrid 

subject to 

Ani 

PbN < Nmax,   PbH H. (8) 

Here the constraint H for P^H is varied between 10" 
and 10-2 and the corresponding maximum value of A„ 
is obtained. A similar optimization problem is defined 
for the reservation scheme by replacing dhybrid by K. 
In Figure 11 we plot the optimal values of An versus 
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Figure 12: Plot of optima^ versus An for the problem 
defined in Equation (9). 

PbH for the reservation scheme and the channel car- 
rying scheme with r = 2 and r — 4. For this figure 
we use the following parameters: A# = 1, /j0 = 1, 
M' = 15, Nmax = 10~2. From Figure 11 one can ob- 
serve that the hybrid carrying scheme allows a higher 
new call rate than the reservation scheme over all val- 
ues of PbH ■ For large values of P^H all the schemes per- 
form essentially the same since it corresponds to the 
case when no carrying is necessary in the hybrid case 
(AT2 = 0) and no reservation is necessary (K = N/r) in 
the reservation scheme. However, for a typical value of 
PbH = 10-4, the hybrid scheme with r = 4 can admit 
approximately 20% more calls into the network than 
the reservation scheme. As is shown in the figure, for 
lower handoff probability constraints, this difference is 
even larger. 

From a network provider's point of view, a more 
useful parameter of interest is the normalized channel 
utilization, 7 , defined as 

A 
7 = 

average number of users in one cell 
total number of available channels in one cell' 

where the total number of available channels in one 
cell is M' = N/r. The parameter 7 is directly re- 
lated to the revenue of a cellular network because it 
incorporates both new and handoff calls. 

To plot the values of 7 under varying loads for the 
hybrid scheme, we define the optimization problem 

maximize   7, 
dhybrid 

subject to   PbH < Hr\ (9) 

Once again, we define a similar optimization problem 
for the reservation scheme by replacing the decision 
variable dhybrid by K. In Figure 12 we plot values of 
7 under varying An. The parameters used for this fig- 
ure are: \H = 1, /j0 = 1, M' = 15, Hmax - 10 . 
The hybrid scheme achieves uniformly higher values 
of 7 under various loads. The difference between the 
hybrid and reservation schemes is most apparent at 
high loads. At such loads, a low value of K is re- 
quired in the reservation scheme to maintain the QoS 
constraint on PbH, thus resulting in a low value of 7. 

On the other hand, due to the mobility of channels 
in the hybrid scheme, the sacrifice in the number of 
local channels to maintain the QoS constraint on PbH 
is not as great. When r = 4, the channel utilization 
for the channel carrying scheme at high loads is over 
50% more than the reservation scheme. Further, this 
advantage will be even more significant as r increases. 

6    Conclusion 
We have presented a novel channel carrying scheme 

to address the problem of handoffs in mobile cellular 
systems. Our basic idea is to allow mobile users to 
carry their current channels into new cells under cer- 
tain conditions. We use the (r+l)-channel assignment 
scheme to avoid co-channel interference due to chan- 
nel movement. This affords us channel mobility at the 
expense of some capacity. An attractive feature of the 
channel carrying scheme is that it does not require 
complex power control techniques or global channel 
coordination, which simplifies its implementation. 

We develop a two-cell model to analyze our chan- 
nel carrying scheme and the traditional channel reser- 
vation technique. We find through numerical results 
that even in the case of the minimum possible reuse 
distance, r = 2, the channel carrying scheme outper- 
forms the reservation technique. 

We further consider a refinement to the channel 
carrying scheme, which provides a useful design pa- 
rameter that allows us to optimize various parameters 
of interest. We again find that our scheme scheme 
uniformly and significantly improves the system per- 
formance, in some cases resulting in over 50% bet- 
ter network utilization than the channel reservation 
scheme. 
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Abstract—Enhancing system capacity while maintaining quality of ser- 
vice is an important issue in wireless cellular networks. In this paper, 
we present a localized channel sharing scheme to address this problem. 
Our basic idea is to allow channels to be shared between adjacent cells at 
the expense of a smaller initial allocation of channels per cell. We show 
that this tradeoff results in a better utilization of network resources. An 
important feature of our sharing scheme is that channel management is 
localized between adjacent cells, and no global coordination or optimiza- 
tion is required, thus making it suitable for implementation. The sharing 
scheme can also facilitate handoff processing. We provide numerical re- 
sults comparing our scheme with the channel reservation technique, and 
find a significant performance improvement over a wide range of traffic 
parameters and a variety of quality of service requirements. 

I. INTRODUCTION 

Worldwide focus on wireless networking research has inten- 
sified in recent years. Compared to its wired counterpart, wire- • 
less spectrum is a much more scarce resource. Thus, enhancing 
system capacity is of great importance in wireless networks. 
The use of cellular technology is a common means to this end. 
In a cellular system, the service area is divided into cells, and 
the wireless spectrum is reused among those cells. We refer to 
the unit of wireless spectrum needed to serve a single user as 
a channel} We adopt the usual assumption that channels used 
in one cell cannot be used in other cells that are closer than the 
minimum reuse distance. A significant body of research has 
been conducted on efficiently allocating channels to individ- 
ual cells under this minimum reuse distance constraint [3], [7]. 
There are, in general, two types of channel allocation schemes: 
Fixed Channel Allocation (FCA) and Dynamic Channel Allo- 
cation (DCA). 

The use of cellular technology also gives rise to new quality 
of service (QoS) related problems; e.g., those related to hand- 

1This research was supported in part by AT&T special purpose grant 670- 
1285-2569, by the National Science Foundation through grants NCR-9624525, 
CDA-9422250, CDA 96-17388, ECS-9410313, and ECS-9501652, and by the 
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lHere, we consider circuit-switched applications, such as voice communi- 
cations, where the bandwidth requirement for each connection is fixed. 

offs. A handoff occurs when a mobile user moves from one cell 
to another. A handoff call is blocked if there is no free channel 
available in the new cell. The probability of blocking a handoff 
call is an important QoS measure thai needs to be considered 
in wireless networks. In fact, since blocking a handoff call is 
less desirable than blocking a new call, specific schemes have 
to be developed to prioritize handoff calls. The channel reser- 
vation scheme is a common prioritization method used in FCA 
systems [1], [6]. Specifically, in each cell a threshold is set, 
and if the number of channels currently used in the cell is be- 
low that threshold, both new and handoff calls are accepted. 
However, if the number of channels used exceeds this thresh- 
old, an incoming new call is blocked and only handoff calls are 
admitted. 

In this paper, we propose a novel channel sharing scheme 
to improve system capacity and QoS in wireless cellular net- 
works. We have briefly introduced the idea of channel sharing 
in [5], without considering handoffs. In this paper we present 
a more comprehensive study taking into account handoffs, and 
the performance gains associated with it. The basic idea in our 
channel sharing scheme is to allow channels to be shared be- 
tween adjacent cells; i.e., channels can be used by any user in 
either cell, without coordinating with other cells for the use of 
the same channels. In this way, channel management can be 
localized within adjacent cells. Further, to avoid global opti- 
mization, we propose a new fixed channel assignment scheme 
that attempts to keep the co-channel reuse distance as close as 
possible while allowing channel sharing. The sharing scheme 
can also facilitate handoff processing, Moreover, channels are 
assigned in such a way that each base-station is responsible 
to transmit over only a portion of the entire channel set, com- 
pared with the case in DCA where each base-station may have 
to transmit over any channel. Therefore, the physical imple- 
mentation complexity of our channel sharing scheme is signif- 
icantly simplified. The above salient features are especially at- 
tractive to micro-cellular networks, where handoff occurs more 
frequently, and, on the other hand, base-station equipment may 



rL 

:    Mela-call Meta-cell 

'•-... (AM. MS.... 

Fig. 1.  Cells and meta-cells in the linear cellular system. 

be inexpensive and not expected to carry out full hardware and 
software functionality. 

Here, it should be emphasized that the concept of sharing or 
borrowing channels per se is not new [2], [3], [7]. However, 
what is new in our scheme is that channels can be shared with- 
out the need for global coordination or dynamic power control. 

II. META-CELLS AND CHANNEL SHARING 

Consider a set of cells in a cellular system. Each cell con- 
tains a base station, which communicates with mobile users in 
that cell. Associated with the cellular system is a set of chan- 
nels, which are to be allocated to the cells. In each cell, an 
individual channel can be used by only one mobile user in the 
cell for communication with the base station. The same chan- 
nel can be reused in two different cells as long as they (the 
cells) satisfy a minimum reuse distance requirement. To elabo- 
rate, we assume that we are given a distance measure d, where 
d(X, Y) is the distance between cells X and Y. We are also 
given a parameter A that represents the minimum reuse dis- 
tance. Two cells X and Y are said to satisfy the minimum 
reuse distance requirement if d(X, Y) > A. 

In the conventional scheme for fixed channel assignment, 
each channel is assigned to cells that are exactly a distance A 
apart, as shown in Figure 1 where A = rL. Consequently, a 
maximum number of channels are assigned to each cell while 
still satisfying the minimum reuse distance requirement. We 
refer to this scheme as tightest fixed channel assignment. 

In cellular systems using the tightest fixed channel assign- 
ment scheme, calls in a cell can only use those channels as- 
signed to that cell. Call blocking results if such a channel is not 
available. For example, if a call arrives at cell B in Figure 1, 
where all channels are already being used, then this new call is 
blocked. Channel borrowing is one way to reduce call block- 
ing. Specifically, if at the time the call arrives at cell B, cell 
A has some idle channels, then cell B may borrow one of the 
idle channels to serve the new call. To achieve this, however, 
we need to coordinate the use of channels in the co-channel 
cells of cell A. For example, to avoid violating the minimum 
reuse distance requirement, channels that are borrowed by cell 
B, cannot be used in cell A'. Such a global channel coordi- 
nation is computationally expensive and therefore difficult to 
implement, and further channel utilization may be decreased 
at high traffic loads [2]. 

In our scheme, we attempt to alleviate call blocking by 

sharing channels between neighboring cells, while localizing 
the channel coordination. To facilitate the description of our 
scheme, we first introduce some terminology. A meta-cell is 
a fixed collection of neighboring cells (typically a pair of two 
adjacent cells). For example, Figure 1 shows a family of meta- 
cells in a linear cellular system, each comprising a pair of two 
adjacent cells. Each meta-cell is designated by a pair (X, Y), 
where X and Y are individual cells called the component cells 
of that meta-cell. For example, in Figure 1, cells A and B are 
components of meta-cell (^4, B). As before, we assume that 
we have a distance measure for meta-cells (e.g., based on the 
distance measure d between cells). 

The main idea of our channel assignment scheme is to al- 
locate channels to meta-cells in such a way that a maximum 
number of channels can be assigned to each meta-cell while 
any two meta-cells assigned the same channels satisfy the min- 
imum reuse distance requirement, i.e., the distance measure, 
now with respect to two meta-cells, is no shorter than A. Our 
channel assignment scheme, done at the meta-cell level, is 
different from the usual channel assignment scheme which is 
done at the cell level. In particular, channels are assigned not to 
individual cells but to meta-cells. A user in a given cell can use 
any channel that is assigned to a meta-cell for which the given 
cell belongs, with the usual proviso that only one user can use 
a given channel within a given meta-cell at a given instance. 
We next point out two fundamental advantages: 
(i) First, the sharing of resources between cells leads to more 
efficient utilization of the resources. In particular, if a new user 
arrives at a cell and a channel is not being used in a neighboring 
cell, the user can use that channel (as long as the neighboring 
cell belongs to the same meta-cell). This feature potentially 
reduces the probability of blocking a new call, 
(ii) Second, when a user moves from one cell to another, under 
certain circumstances it may not be necessary to assign another 
channel to the user. Specifically, if a user in a given cell moves 
to a neighboring cell which is part of the same meta-cell, and 
the user is using a channel that is assigned to that meta-cell, the 
user can move to the neighboring cell without any risk of hand- 
off blocking. Moreover, the processing of the handoff can also 
be simplified because the user continues its service by using 
the same channel during handoff. Furthermore, if we model 
and predict the mobility of a particular user, we can reduce the 
incidence of handoff blocking by reassigning (if necessary) to 
the user a channel that can be shared with the next destination 
cell. The benefit comes from the fact that the time available 
to do this processing is the time a user spends in a given cell 
- potentially much longer than the time available to conven- 
tionally process a handoff call, typically only when a user is at 
the boundary between two cells. This feature is important for 
cellular systems with small-sized cells, such as micro-cellular 
systems. 



The proposed channel sharing scheme differs from conven- 
tional channel borrowing. By using the meta-cell based chan- 
nel assignment as described in Section III, channel sharing can 
be completely localized within a meta-cell, i.e., we do not re- 
quire any channel locking or power control technique which 
is essential in channel borrowing schemes. Note that relative 
to the usual fixed channel assignment scheme, in our sharing 
scheme we need to coordinate between cells in a meta-cell. 
However, since meta-cells consist only of neighboring cells, 
the scheme should be easy to implement. 

We next briefly describe the protocol to exploit the sharing 
feature of our scheme. The detailed protocol design can be 
found in [4]. For the sake of description, we focus our atten- 
tion on a particular (arbitrary) cell, which is referred to as the 
local cell. Recall that each cell is always covered by several 
overlapping meta-cells, called the covering meta-cells of that 
cell. We call channels that are assigned to the covering meta- 
cells of the local cell the accessible channels, since users in the 
local cell may have access to those channels. At any given in- 
stance, each accessible channel can be used in only either the 
local cell or one of the adjacent cells. Those channels that can 
be used by the local cell are called enabled channels. 

When a call arrives, it can be accepted if there is an idle en- 
abled channel in the local cell. Otherwise, we attempt to obtain 
a channel from some sharing cell, as follows. We first look up 
all accessible channels currently not enabled in the local cell, 
and get a list of the sharing cells associated with those chan- 
nels. We then choose one of those sharing cells on that list, and 
send it a sharing request. The sharing cell, upon receiving the 
sharing request, then executes the procedure described below. 
If the sharing request is granted, we accept the arriving call by 
assigning the idle channel specified by the sharing cell. If the 
request is denied, we proceed to send another sharing request 
to one of the remaining sharing cells on the list. The process 
is continued until the sharing request is accepted, or denied by 
all sharing cells on the list, in which case the call is rejected 
(blocked). 

When a sharing request is received from a sharing cell, we 
first check whether there is any idle enabled channel, associ- 
ated with that sharing cell. If so, we grant the sharing request. 
Otherwise, we attempt to obtain such an idle channel by swap- 
ping channels: if there is any idle enabled channel in the local 
cell, we first find another enabled channel associated with the 
sharing cell, and then swap those two channels so that we can 
grant the sharing request. If there is no idle enabled channel in 
the local cell, the sharing request is rejected. 

III. META-CELL BASED CHANNEL ASSIGNMENT 

In this section, we illustrate the meta-cell based channel as- 
signment scheme for a 2-D cellular system. In the planar or 

2-D case, the cellular configuration is usually assumed to be 
hexagonal. This means that the entire area of interest is cov- 
ered with equal-sized hexagonal cells. The distance d(X, Y) 
between two cells X and Y is traditionally defined as the dis- 
tance between their centers. Let N denote the total number of 
distinct channels available in this hexagonal cellular system. 
In the tightest fixed channel assignment scheme, co-channel 
cells (i.e., cells that are assigned the same set of channels) are 
exactly a distance of A, the minimum reuse distance, apart. 
Consequently, each cell is assigned N/R channels, where R is 
the minimum reuse factor and can be determined from A by 
R = (1/3) (A/p)2, with p being the radius of a single cell. 
In general, the minimum reuse factor R can be represented by 
R = p2 + pq + q2, where p and q are nonnegative integers 
satisfying p + q > 2. Without loss of generality, we assume 
that q > p in the following. 

As in the linear case, a meta-cell here consists of two adja- 
cent neighboring cells. To allow for channel sharing, we as- 
sign channels to meta-cells under the minimum reuse distance 
constraint in terms of meta-cells. Again, the main idea of our 
channel assignment scheme is to deploy co-channel meta-cells 
(i.e., meta-cells that are assigned the same set of channels) as 
close as possible to maximize channel reuse efficiency. In the 
remainder of this section, we describe this channel assignment 
scheme in detail. 

Consider an arbitrary cell A0 in the hexagonal cellular sys- 
tem as shown in Figure 2, and establish a set of coordinates i-j 
originating at the center of cell A0, where the two axes form a 
60° angle, and the unit distance along the axes is VZp. Then, 
the minimum reuse distance A is equal to R coordinate units 
in this set of coordinates. The center of any hexagon Z can be 
designated by a pair of coordinates (iz,3z), with iz and jz 
integers. Let B0, C0, D0, E0, F0, and G0 denote six hexagons 
with centers at the coordinates (p, q), (-q, p + q), {—p - q, p), 
{-P, -q)> (tf> -P ~ 9). and (p + q, -p), respectively, (see Fig- 
ure 2). Note that their distance to cell AQ (centered at (0,0)) 
are equal and given by p2 + pq + q2 = R units. In the tightest 
fixed channel assignment scheme, cells Bo, Co, Do, Eo, Fo, 
and G0 are assigned the same set of channels as cell A0. 

Let Ai be the adjacent right neighboring cell of A0 along the 
z-axis as shown in Figure 2, i.e., (i^, 3AX) = (M0 +1>3A0) = 
(1,0). We next focus on meta-cell (A0, Ai) as the reference 
meta-cell. Note that in the 2-D case, meta-cells may have three 
distinct orientations2, and each meta-cell may have six neigh- 
boring co-channel meta-cells. Consequently, there are an infi- 
nite number of different ways to deploy co-channel meta-cells, 
including irregular (non-repetitive) deployment patterns. For 
the sake of simplicity and regularity, in the following we re- 

2The orientation of a meta-cell is the directional relationship between its two 
component cells. 
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Fig. 2.  Configuration of co-channel meta-cells in the case of p + 1 > p. 

strict ourselves to deployment methods in which all co-channel 
meta-cells are of the same orientation. In other words, for any 
co-channel meta-cell of (AQ, Ai) of interest, two components 
are adjacent along the i-axis. Therefore, we can identify any 
co-channel meta-cell of reference meta-cell (Ao, AI) by its left 
component3. 

It turns out that for different values of p and q, we need dif- 
ferent methods to deploy co-channel meta-cells of reference 
meta-cell (A0, Ai), depending on whether p +1 > q. For sim- 
plicity, we assume that p + 1 > q (the case where p + 1 < q 
is considered in the appendix). The values of R within this 
category may be 3,7,12,19, etc. It can be shown that in this 
case, as illustrated in Figure 2, the meta-cells whose left com- 
ponents are respectively B\, C0, £>-i, -E-i, F0 and G\, can 
be deployed as co-channel meta-cells of reference meta-cell 
(A0,Ai), where the centers of cells Bi, D_i, üLi and G± 
are given respectively as follows: (ißi: JBJ = (P + 1,9), 

(*£»_!,JD-J = (-p-q-l,p), (iE^,3E^) = (-p-l,-q), 
and (id,3d) — (v + Q + 1, —p)- Some important observa- 
tions of the above co-channel meta-cell deployment are made 
in the appendix. 

IV. REFINEMENTS 

In the previous section, we presented the basic channel shar- 
ing scheme. To make our scheme practically useful, we next 
discuss two refinements. 

A. Combined Scheme 

It is instructive to compare the effective channel capacity us- 
ing our sharing scheme and the tightest fixed channel assign- 
ment scheme. In our scheme, the maximum possible channel 
capacity of each cell is clearly just the total number of distinct 
accessible channels for each cell. As we pointed out above, 
in an individual cell, the number of accessible channels in our 

3The left component cell in a meta-cell is the component cell which is posi- 
tioned in the left side along the i-axis. 

scheme is generally larger than that of the fixed scheme. Note 
that, however, this number is an upper bound of the effective 
channel capacity since it assumes that the statistical sharing ad- 
vantage can be fully exploited. On the other hand, if we totally 
ignore the statistical sharing advantage, then we may obtain 
a lower bound for the channel capacity. To be specific, we 
equally distribute channels that are assigned to each meta-cell 
into two component cells, and then count the total number of 
distinct channels now available for each cell. Hence, the ef- 
fective channel capacity using our sharing scheme is bounded 
by these two extreme scenarios, and depends on the extent to 
which the statistical sharing advantage is actually obtained. 

Next, we present a combined scheme that attempts to maxi- 
mize the effective channel capacity for each cell. Specifically, 
we divide all the N channels into two distinct groups of size 
JVi and N2 such that N = Nx + N2. The first group of Nx 

channels is assigned to cells using the tightest fixed channel 
assignment scheme, and thus cannot be shared between adja- 
cent cells. The remaining group of N2 channels, however, is 
assigned to meta-cells according to our channel sharing assign- 
ment scheme, and can be shared within meta-cells, the same as 
in the previous sections. 

Varying N2 allows us to maximize the effective channel ca- 
pacity. Specifically, the parameter N2 enables us to trade off 
the potential advantage from statistical sharing with a reduc- 
tion in the average number of channels for each cell. The larger 
the value of N2 in the combined scheme, the more gain we 
expect from statistical sharing, but at the same time the more 
price we pay by reducing the average number of channels for 
each cell. 

Figure 3 illustrates the partitioning of accessible channels 
in a cell into the two groups described above. The number 
of accessible channels in each of these groups is Ni/R and 
2N2/R', respectively (in the 2-D case). Note that the number 
of enabled channels in the first (Ni/R) group is fixed, whereas 
the number of enabled channels in the second group can vary 
between 0 and 2N2/R'. 
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B. Threshold HandoffScheme 

In our basic channel sharing scheme, we do not distinguish 
between new and handoff call arrivals. However, studies have 
shown that one of the most important user concerns is that ser- 
vice not be cut off during an on-going call. Therefore, blocking 
a handoff arrival is even less desirable than blocking a new ar- 

rival. 
The threshold scheme is a popular way to prioritize handoff 

calls. Specifically, a number of channels can be reserved solely 
for the use of handoff, allowing both handoff and new calls to 
compete for the remaining channels. To prioritize handoff calls 
in our channel sharing scheme, we apply the following two 
threshold schemes. Note that the threshold restrictions apply 
only to new call requests. 

K\ threshold 

The first part of our threshold scheme is the same as the 
channel reservation scheme. Specifically, a new call arriving at 
a cell will be blocked if the number of current users in that cell 
exceeds a threshold Kx, with Kx < ^ + ^ in the 2-D case. 
The threshold Kx is set to avoid overall excessive use of acces- 
sible channels by new calls. For example, in some scenarios, 
accessible channels may be accumulated in one cell because of 
channel movement. In this case, it is desirable to limit exces- 
sive access to those channels by new calls, waiting instead for 
potential sharing requests from sharing cells. Note that the Kx 

threshold takes effect only if the number of enabled channels 
is greater than Kx (otherwise, we apply another threshold, K2, 
described in the next section). 

Figure 4 provides an illustration of the Kx threshold scheme. 
In the figure, we assume that the number of enabled channels 
is greater than Kx. As illustrated, if the number of channels 
being used does not exceed Kx, then new calls are accepted; 
otherwise, they are blocked. 

Note that to achieve a given quality of service requirement 
for handoff, the threshold Kx in our scheme may be gener- 
ally chosen higher than the threshold used in the channel reser- 
vation scheme, because now handoff requests have access to 
more channel capacity due to sharing. In other words, we need 
to reserve fewer channels a priori for handoff calls. This helps 
increase the efficiency of our handoff scheme compared to the 
conventional reservation scheme, as will be demonstrated in 

Section V. 
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K2 threshold 

If the new call is not blocked by the first part of the thresh- 
old scheme, it is accepted if there are idle channels in the cell. 
Otherwise, if there are no idle channels (i.e., the number of en- 
abled channels is less than or equal to Kx), we then attempt 
to obtain an accessible channel from sharing cells. The sec- 
ond part of the threshold scheme is now applied to limit the 
sharing accessibility associated with individual sharing cells. 
Specifically, we first set the value of a second threshold K2, 
where K2 < %■ in the 2-D case. Then, we send out shar- 
ing requests only to the adjacent cells that have fewer than K2 

sharable channels currently being used in the local cell. In this 
way we prevent new calls from excessively using up sharable 
channels associated with any particular sharing cell, and thus 
prioritize potential handoffs from that sharing cell. 

Figure 5 illustrates the K2 threshold scheme. Note that the 
number of enabled channels here is not more than Kx (for oth- 
erwise the K2 threshold does not take effect). In the figure, 
we use the term rich neighbor to denote a neighboring cell that 
has fewer than K2 sharable channels in the local cell. If the 
neighboring cell has more than or equal to K2 channels in the 
local cell, we use the term poor neighbor. In other words, we 
send out sharing requests for new calls only to rich neighbors. 

V. NUMERICAL RESULTS 

In this section, we compare, via simulation, the performance 
of our sharing scheme with handoff prioritization and the chan- 
nel reservation scheme based on the tightest fixed channel as- 
signment. Here, we distinguish between the blocking of new 
and handoff calls. The QoS measures we are interested in this 
case are: PbN, the blocking probability of new calls, and PbH, 
the blocking probability of handoff calls. 

Our simulation model for the the 2-D cellular system con- 
sists of 36 cells, with each cell having six adjacent cells. The 
cells on the boundary of one side of the configuration are con- 
nected to the cells on the boundary of the other side. The call 
traffic is assumed to be symmetrically distributed over all the 
cells. Calls are assumed to arrive at each cell according to a 



Poisson process with rate An. The time until a call terminates 
is assumed to be exponentially distributed with mean l/ß. The 
time a user spends in a cell before making a handoff request 
to go to another cell is assumed to be exponentially distributed 
with mean 1/A#. In our simulation model, users in a cell may 
direct a handoff request to each of the adjacent cells with equal 
probability. Since we are interested in the performance of a 
typical cell, the statistics obtained are averaged over all cells. 
To systematically compare our handoff scheme with the chan- 
nel reservation scheme, we next investigate three design prob- 
lems. 
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PbN versus An 

Here we provide plots of PbN under varying load condi- 
tions for the sharing and reservation schemes. The perfor- 
mance measures depend on the parameters N2, K\, and K2 

in the sharing scheme, and the parameter K in the reserva- 
tion scheme. To meaningfully compare our combined scheme 
with the reservation scheme, we determine the optimal values 
of PbN for the two schemes, given a constraint on PbH- There- 
fore, in the sharing scheme, to appropriately choose N2, K\, 
and K2, we consider the following optimization problem: 

Fig. 6.   Plot of optimal P(,jv versus Xn for the problem defined in Equation (1). The 

minimize 

subject to 

PbN 

PbH < H„ (1) 

where Hmax denotes a prespecified maximum level for PbH- A 
similar optimization problem can be defined for the reservation 
scheme, where the decision variable is now replaced with the 
threshold parameter K. For a fair comparison of our sharing 
scheme with the reservation scheme, we calculate the optimal 
values of PbN for the two schemes, given the same Hmax- 

Figure 6 shows plots of the optimal values of PbN for the 
reservation and sharing schemes under varying A„. For this 
figure we use the following parameters: A# = 5, ß = 1, 
N/R = 15, (for example N = 45 when R = 3). The call 
handoff blocking probability PbH is constrained by Hmax — 
IO-4, a typical value. Figure 6 shows that the combined shar- 
ing scheme achieves uniformly lower values of PbN than the 
reservation scheme. We also notice that at low traffic load, 
there is virtually no new call blocking for the sharing scheme. 

An versus PbH 

In this experiment, we compare the maximum new call ar- 
rival rate A„ that can be admitted by the sharing and the reser- 
vation schemes for various handoff blocking probabilities PbH ■ 
More precisely, we define the following optimization problem 
for the channel sharing scheme: 

maximize 
N2,Kl,K2,Xn 

parameters used in this plot are: N/R = 15, \H = 5, n = 1, H„, 10" 
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Fig. 7.   Plot of optimal A„ versus PbH for the problem defined in Equation (2). The 

parameters in this figure are: N/R = 15, A// = 5, /j. = 1, Nmax = 10-2. 

subject tO PbN < Nma.x 

PbH=H 

(2) 

Here, the constraint H for PbH is varied between 10-6 and 
IO-2 and the corresponding maximum value of A„ is obtained. 
Again, a similar optimization problem is defined for the reser- 
vation scheme by replacing N2, K\, and K2 by K. In Figure 7, 
we plot the optimal values of An versus PbH for our sharing 
scheme and the reservation scheme scheme with R = 3, 7, 
12, and 19. For this figure we use the following parameters: 
XH = 5, ß = 1, N/R = 15, Nmax = 10-2. We observe 
that our sharing scheme allows a higher new call rate than the 
reservation scheme over all values of PbH • For a typical value 
of PbH = 10-4, our sharing scheme with R = 19 can ad- 
mit approximately 64% more calls into the network than the 
reservation scheme. As is also shown in the figure, for lower 
handoff probability constraints, this difference is even larger. 
Improving the admissible arrival rate results in increased rev- 
enue for the network provider. 



—- R=19 
---R=12 
— R=7 
■ — R=3 
— Reservation 

/ 
£~ "^ 

Fig. 8. . B.     Plot of optimal 7 versus A„ for the problem defined in Equation (3).  The 

parameters used in this figure are: N/R = 15, XH = 5, p = 1, Hmax = 10 

Utilization versus Xn 

From the point of view of a network provider, a useful pa- 
rameter of interest is the normalized channel utilization, 7 , 
defined as 

7 = 
average number of users in one cell 

total number of available channels in one cell' 

where the total number of available channels in one cell is 
N/R. The parameter 7 is directly related to the revenue of a 
cellular network because it incorporates both new and handoff 

calls. 
To plot the values of 7 under varying loads for the sharing 

scheme, we define the optimization problem 

maximize 
N2,KltK2 

subject to       PbH < H-n (3) 

Once again, we define a similar optimization problem for the 
reservation scheme by replacing the decision variable by K. 

In Figure 8, we plot values of 7 under varying A„. The pa- 
rameters used for this figure are: AH = 5, /x = 1, N/R = 15, 
Hmax = 10~4. The sharing scheme achieves uniformly higher 
values of 7 under various loads. The difference between the 
combined and reservation schemes is most apparent at high 
loads. At such loads, a low value of K is required in the reser- 
vation scheme to maintain the QoS constraint on PbH, thus 
resulting in a low value of 7. On the other hand, due to the 
channel sharing, the threshold to maintain the QoS constraint 
on PbH is not as low. When R = 19, the channel utilization 
for the channel sharing scheme at high loads is over 64% more 
than the reservation scheme. 

VI. CONCLUSION 

We have presented a novel channel sharing scheme to im- 
prove system capacity and QoS in wireless cellular systems. 

Our basic idea is to allow channels to be shared between ad- 
jacent cells without co-channel coordination with other cells. 
For this purpose, we introduce the concept of meta-cells to fa- 
cilitate localized channel management. Further, to maximize 
channel reuse efficiency, we develop a channel assignment 
method based on the distance measure between meta-cells. In 
general, our channel sharing scheme leads to channel access 
in a statistical multiplexed fashion, but at the expense of some 
nominal capacity. An attractive feature of the channel sharing 
scheme is that it does not require complex power control tech- 
niques, global channel coordination, or on-line optimization, 
which simplifies its implementation. 

To make our channel sharing scheme practically useful, we 
then propose two important refinements, which provide use- 
ful design parameters to maximize system performance under 
various QoS constraints. We numerically compare our channel 
sharing scheme with the channel reservation scheme. Simula- 
tion results show that our scheme significantly improves sys- 
tem capacity over a large range of traffic conditions and a vari- 
ety of QoS requirements, in some cases resulting in over 60% 
better network utilization than the channel reservation scheme 
in the 2-D hexagonal system. 

APPENDIX 

APPENDIX 

I. CHANNEL ASSIGNMENT SCHEME FOR THE 2-D CASE 

A. Observations on the case ofp + 1 > q 

The following are some important observations of the co- 
channel meta-cell deployment for the case of p + 1 > q in the 
2-D hexagonal configuration. 
• The distance measure between any neighboring meta-cells 
in this co-channel meta-cell deployment is exactly equal to the 
minimum reuse distance R units. In this way, we deploy co- 
channel meta-cells as close as possible and maximize channel 
reuse efficiency while allowing channel sharing. 
• Comparing with the deployment of co-channel cells in the 
tightest fixed channel assignment scheme, we note that the left 
components of the co-channel meta-cells of reference meta- 
cell (A0,Ai) can be readily generated by starting from cells 
Bo,Co,D0,E0,Fo,G0, and then keeping C0,F0, but sub- 
stituting B0, Go respectively by their immediate right, and 
Do, Eo respectively by their immediate left neighboring cells, 
all along the z-axis (see Figure 2). 

B. Channel reuse factor for the case ofp + 1 > q 

We next determine the channel reuse factor for the co- 
channel meta-cell deployment method for the case of p+1 > q 
in the 2-D hexagonal configuration. Recall that in the tightest 
fixed channel assignment scheme, each cell is assigned N/R 
channels.  For comparison, we now calculate the number of 



distinct channels that a single meta-cell can be assigned using 
the channel assignment scheme described in Section II. Note 
that in the 2-D hexagonal cellular system, there are three types 
of meta-cell orientations. For simplicity, we equally divide the 
total N distinct channels into three groups, each assigned to 
meta-cells with one particular orientation. In other words, all 
meta-cells with the same orientation, say along the i-axis, will 
reuse iV/3 distinct channels. Let the number of distinct sets of 
co-channel meta-cells with the same orientation to be R!. Then 
each meta-cell may be assigned (N/3)/R' distinct channels. 
In fact, we claim that using the above meta-cell deployment 
method, R' is given by 

R' = R + p + q. (4) 

For example, when R = 3,7,12,19, the corresponding R' is 
given by R' = 5,10,16,24. 

To show that Equation (4) holds, we note that R', the num- 
ber of distinct sets of co-channel meta-cells with the same ori- 
entation, is given by the number of cells whose centers lie in 
the parallelogram j4n.BiGi.Fo4 excluding the edges BiGi and 
FoGi (see Figure 2). Further, by symmetry, R' can be reduced 
to the ratio of the area of the parallelogram A0BiGiF0 to the 
area of a single cell. The area of a single cell is simply given by 
^Y^p2. With some tedious manipulations, we obtain the area 

of the parallelogram A0BiGiF0 as ^-{p2+pq+q2+p+q)p2. 
Hence, Equation (4) follows. 

C. The case ofp + 1 < q 

We now describe the channel assignment scheme in the case 
where p + 1 < q. Within this category, the values of R may 
be 4,9,13,16, etc. To deploy co-channel meta-cells as close as 
possible in this case, in general we need to compare the channel 
reuse efficiency for various deployment possibilities. Specifi- 
cally, obtaining a tight co-channel meta-cell deployment of ref- 
erence meta-cell (Ao, A\) can be effectively reduced to finding 
another two cells, denoted as X\, X^, such that: 
(i) meta-cells (A0,Ai), {X\, Y\), and (X2, Y2) do not violate 
the minimum reuse distance requirement, where Yi and Y2 de- 
note the right adjacent cells along the z-axis of X\ and X2 
respectively; and 
(ii) the area of the triangle5 A0X1X2 is minimized. 
Once we have determined cells X\ and X2, the left compo- 
nents of the remaining neighboring co-channel meta-cells of 
reference meta-cell (Ao, A{) can be easily derived by symme- 
try. 

A computer program has been developed to compare vari- 
ous possible choices of X\ and X2. We find that for R < 100 

4 A parallelogram ABCD is defined by the centers of the four cells A, B, 
C, and D. 

5 A triangle ABC is defined by the centers of the three cells A, B, and C. 

meta-ceFU GL.GL) 
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Fig. 9.  Configuration of co-channel meta-cells in the case of p -f- 1 < q. 

(a realistic range of R values), it would take less than two 
minutes to enumerate all possibilities and yield the tightest 
co-channel meta-cell deployment. Note that in a real-world 
application, channel assignment can be done off-line. There- 
fore, it would not be difficult to determine the tightest deploy- 
ment by using computer enumeration. An interesting observa- 
tion in our numerical results is that in most of the cases, the 
tightest deployment can be obtained from one of the follow- 
ing two {Xi,X2} choices: Xi and X2 center at (p + l,q) 
and (p + q + 2, —p) respectively (shown in Figure 9) or at 
(p,q + 1) and (p + q+1, —p + 1), respectively. Therefore,in 
most cases, we may even simply compare the areas of the tri- 
angle A0X1X2 corresponding to those two {-X"i, X2} choices, 
to compute a tight co-channel meta-cell deployment method. 
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Enhancing system capacity while maintaining quality of service is an important issue in wireless cellular networks. In 

this paper, we present a new localized channel sharing scheme to address this problem. Our basic idea is to allow channels 

to be shared between adjacent cells. We further propose a fixed channel assignment scheme to maximize channel reuse 

efficiency while allowing channel sharing. We show that our sharing scheme can also facilitate handoff processing. An 

important feature of our sharing scheme is that channel management is localized between adjacent cells, and no global 

coordination or optimization is required, thus making it suitable for implementation. 

We provide simulation results comparing our scheme with the conventional channel assignment and handoff techniques. 

We find that our scheme improves system capacity over a broad range of traffic parameters and a variety of quality of 

service requirements. 

Keywords: Cellular, channel sharing, channel borrowing, dynamic channel allocation, local control. 

1. Introduction 

Worldwide focus on wireless networking research has 

intensified in recent years. Compared to its wired coun- 

terpart, wireless spectrum is a much more scarce re- 

source. Thus, enhancing system capacity is of great 

importance in wireless networks. The use of cellular 

technology is a common means to this end. In a cellu- 

lar system, the service area is divided into cells, and the 

wireless spectrum is reused among those cells. We refer 

to the unit of wireless spectrum needed to serve a single 

user as a channel. For example, in a TDMA system, a 

* This research was supported in part by AT&T special pur- 

pose grant 670-1285-2569, by the National Science Founda- 

tion through grants NCR-9624525, ANI 9805441, CDA-9422250, 

CDA 96-17388, ECS-9410313, and ECS-9501652, and by the 

U.S. Army Research Office through grant DAAH04-95-1-0246. 

time-slot is viewed as a channel. We consider circuit- 

switched applications, such as voice communications, 

where the bandwidth requirement for each connection 

is fixed. 
We adopt the usual assumption that channels used 

in one cell cannot be used in other cells that are closer 

than the minimum reuse distance. A significant body 

of research has been conducted on efficiently allocating 

channels to individual cells under this minimum reuse 

distance constraint [12,21]. There are, in general, two 

types of channel allocation schemes: 

1. Fixed Channel Allocation (FCA): Channels are al- 

located permanently to each cell for its exclusive 

use. Users in a cell can be served only by channels 

belonging to that cell. To maximize reuse efficiency, 

the same set of channels is reused in cells exactly a 



minimum reuse distance apart [14,22]. An attrac- 

tive feature of FCA lies in its simple implementa- 

tion, compared to the dynamic channel allocation 

schemes, described next. 

2. Dynamic Channel Allocation (DCA): Channels are 

not tied to a fixed cell, but allocated dynamically 

upon each call request. DCA is expected to improve 

system capacity over FCA by exploiting the traf- 

fic fluctuation in different cells. However, in gen- 

eral, implementation complexity is also increased. 

Specifically, to avoid violating the minimum reuse 

distance constraint, coordination of channel use 

within the required reuse distance is necessary. 

Further, to maximize reuse efficiency, global opti- 

mization is typically required. Channel coordina- 

tion and optimization can be done in a centralized 

[4,5,24,25] or decentralized fashion [1,2,6,8,13,18], 

which results in various tradeoffs between perfor- 

mance and complexity. 

The use of cellular technology also gives rise to new 

quality of service (QoS) related problems; i.e., those re- 

lated to handoffs. A handoff occurs when a mobile user 

moves from one cell to another. A handoff call is blocked 

if there is no free channel available in the new cell. The 

probability of blocking a handoff call is an important 

QoS measure that needs to be considered in wireless 

networks. In fact, since blocking a handoff call is less 

desirable than blocking a new call, specific schemes have 

to be developed to prioritize handoff calls. The channel 

reservation scheme is a common prioritization method 

used in FCA systems [7,17,19,20,23]. Specifically, in 

each cell a threshold is set, and if the number of chan- 

nels currently used in the cell is below that threshold, 

both new and handoff calls are accepted. However, if 

the number of channels used exceeds this threshold, an 

incoming new call is blocked and only handoff calls are 

admitted. 

In this paper, we propose a novel localized chan- 

nel sharing (LCS) scheme to improve system capacity 

and QoS in wireless cellular networks. While the LCS 

scheme is motivated by our previous work in [15], it 

is more general, overcomes the drawbacks of the previ- 

ous work, and provides significantly better performance. 

The basic idea in our LCS scheme is to allow channels 

to be shared between adjacent cells; i.e., channels can 

be used by any user in either cell, without coordinating 

with other cells for the use of the same channels. In this 

way, channel management can be localized within ad- 

jacent cells. Further, to avoid global optimization, we 

propose a new fixed channel assignment scheme that at- 

tempts to keep the co-channel reuse distance as close as 

possible while allowing channel sharing. We show that 

the LCS scheme can also facilitate handoff processing. 

Moreover, channels are assigned in such a way that each 

base-station is responsible to transmit over only a por- 

tion of the entire channel set, compared with the case in 

DCA where each base-station may have to transmit over 

any channel. Therefore, the physical implementation 

complexity of the LCS scheme is significantly simpli- 

fied. The above salient features are especially attractive 

in micro-cellular networks, where handoff occurs more 

frequently, and, on the other hand, base-station equip- 

ment may be inexpensive and not expected to carry out 

full hardware and software functionality. 

We first describe the main idea of the LCS scheme 

and channel assignment technique in Section 2.1, and 

then illustrate our scheme by considering two commonly 

used cellular configurations: linear (Section 2.2) and 2- 

D hexagonal (Section 2.3). In Section 3, we present 

in detail a protocol to implement the LCS scheme. To 

make the scheme practically useful, we then introduce 

two refinements in Section 4, which provide useful de- 

sign parameters to maximize performance under various 

QoS constraints. Simulation results in Section 5 show 

that our scheme significantly outperforms the FCA and 

the reservation handoff scheme over a large range of 

traffic conditions and a variety of QoS requirements. We 

also quantitatively analyze the implementation com- 

plexity associated with the LCS scheme. 

2. Localized Channel Sharing Assignment 

Scheme 

2.1. Meta-cells 

Consider a set of cells in a cellular system. Each 

cell contains a base station, which communicates with 

mobile users in that cell. Associated with the cellular 

system is a set of channels, which are to be allocated to 

the cells. In each cell, an individual channel can be used 

by only one mobile user in the cell for communication 

with the base station. The same channel can be reused 

in two different cells as long as they (the cells) satisfy a 

minimum reuse distance requirement. To elaborate, we 

assume that we are given a distance measure d, where 



d(X,Y) is the distance between cells X and Y. We are 

also given a parameter A that represents the minimum 

reuse distance. Two cells X and Y are said to satisfy the 

minimum reuse distance requirement \fd(X,Y) > A. 

In the conventional scheme for fixed channel assign- 

ment, each channel is assigned to cells that are exactly 

a distance A apart. Consequently, a maximum number 

of channels are assigned to each cell while still satisfy- 

ing the minimum reuse distance requirement. We refer 

to this scheme as tightest fixed channel assignment. To 

illustrate the scheme, consider a simple linear cellular 

system, as shown in Figure 1. In the figure, each cell is 

allocated a particular subset of channels, and the same 

channel set is allocated to cells that are exactly a dis- 

tance of A apart. 
In cellular systems using the tightest fixed channel 

assignment scheme, calls in a cell can only use those 

channels assigned to that cell. Call blocking results if 

such a channel is not available. For example, if a call ar- 

rives at cell B in Figure 1, where all channels are already 

being used, then this new call is blocked. Channel bor- 

rowing is one way to reduce call blocking. Specifically, 

if at the time the call arrives at cell B, cell A has some 

idle channels, then cell B may borrow one of the idle 

channels to serve the new call. To achieve this, how- 

ever, we need to coordinate the use of channels in the 

co-channel cells of cell A. For example, to avoid violat- 

ing the minimum reuse distance requirement, channels 

that are borrowed by cell B cannot be used in cell A'. 

Such a global channel coordination is computationally 

expensive and therefore difficult to implement, and fur- 

ther channel utilization may be decreased at high traffic 

loads [9]. 
In our scheme, we attempt to alleviate call blocking 

by sharing channels between neighboring cells, while lo- 

calizing the channel coordination. To facilitate the de- 

scription of our scheme, we first introduce some termi- 

nology. A meta-cell is a fixed collection of neighboring 

cells (typically a pair of two adjacent cells). For exam- 

ple, Figure 1 shows a family of meta-cells in a linear 

cellular system, each comprising a pair of two adjacent 

cells. Each meta-cell is designated by a pair (X,Y), 

where X and Y are individual cells called the compo- 

nent cells of that meta-cell. For example, in Figure 1, 

cells A and B are components of meta-cell (A, B). As 

before, we assume that we have a distance measure for 

meta-cells (e.g., based on the distance measure d be- 

tween cells). 
The main idea of our channel assignment scheme is 

to allocate channels to meta-cells in such a way that a 

maximum number of channels can be assigned to each 

meta-cell while any two meta-cells assigned the same 

channels satisfy the minimum reuse distance require- 

ment, i.e., the distance measure, now with respect to 

two meta-cells, is no shorter than A. For example, Fig- 

ure 2 (described in more detail Inter) depicts the channel 

assignment scheme for the two meta-cell groups in the 

linear cellular system illustrated previously. 

Our channel assignment scheme, done at the meta- 

cell level, is different from the usual channel assignment 

scheme which is done at the cell level. In particu- 

lar, channels are assigned not to individual cells but 

to meta-cells. A user in a given cell can use any chan- 

nel that is assigned to a meta-cell to which the given 

cell belongs, with the usual proviso that only one user 

can use a given channel within a given meta-cell at a 

given instance. 
Our channel allocation scheme allows channels to be 

shared between neighboring cells (namely, cells belong- 

ing to the same meta-cell). We point out two funda- 

mental advantages: 

1. First, the sharing of resources between cells leads to 

more efficient utilization of the resources. In par- 

ticular, if a new user arrives at a cell and a channel 

is not being used in a neighboring cell, the user can 

use that channel (as long as the neighboring cell 

belongs to the same meta-cell). This feature po- 

tentially reduces the probability of blocking a new 

call. 

2. Second, when a user moves from one cell to another, 

under certain circumstances it may not be necessary 

to assign another channel to the user. Specifically, 

if a user in a given cell moves to a neighboring cell 

which is part of the same meta-cell, and the user is 

using a channel thai is assigned to that meta-cell, 

the user can move to the neighboring cell without 

any risk of handoff blocking. This feature poten- 

tially reduces the probability of blocking a handoff 

call. 

Note that relative to the usual fixed channel assignment 

scheme, in the LCS scheme we need to coordinate be- 

tween cells in a meta-cell.   However, since meta-cells 



consist only of neighboring cells, the scheme should be 

easy to implement. 

The idea of sharing channels among users in adja- 

cent cells has also been explored in [3,11], where the 

authors proposed to exploit the overlapping coverage of 

adjacent base-stations naturally arising in many cellu- 

lar systems, and to allow users in overlapping areas to 

access channels of two base-stations. However, the per- 

formance improvement is limited by the physical area of 

overlapping coverage and the amount of instantaneous 

traffic in that area. The LCS scheme proposed in this 

paper creates logical overlapping coverage (meta-cell), 

and allocates the channels in such a way that all users 

in a cell can access channels assigned to the meta-cells 

covering that cell. Thus, it does not rely on a particular 

physical overlapping coverage in a given system. 

Note that if no channels are available for a new call 

in the meta-cells in which the given call belongs, it may 

still be possible to satisfy the channel request, provided 

there is some channel available elsewhere. To see how 

this can be done, consider the linear cellular configura- 

tion shown in Figure 1. Suppose a channel is requested 

at cell A and no channel is available in meta-cell (A, B), 

but a channel is available in meta-cell (B,C). A user 

in cell B using a channel assigned to meta-cell (A, B) 

could then exchange its channel for the unused channel 

assigned to meta-cell (B, C), thus freeing up its channel, 

which can then be used to satisfy the channel request 

at cell A. If, instead, a channel is not available in meta- 

cell (B, C) but in some other meta-cell further along, a 

string of exchanges similar to the above can be made to 

eventually free up a channel in meta-cell (A, B) needed 

to serve the channel request. Of course, some limit will 

need to be placed in practice on the maximum number 

of exchanges allowed to serve any given channel request 

to limit the complexity of the scheme. Throughout this 

paper, unless otherwise specified, we assume that such 

exchanges are not allowed (i.e., for simplicity, we assume 

that if channels are not available for a cell in the meta 

cells in which the request occurs, the call is blocked). 

In the following, we illustrate our channel assignment 

scheme for two typical cellular systems: linear and 2-D 

hexagonal. We develop methods to deploy meta-cells 

assigned the same channels as tightly as possible, while 

not violating the minimum reuse distance requirement. 

We then present a protocol to implement the channel 

assignment scheme, which maximally exploits the ad- 

vantages of our framework. We then compare the per- 

formance of our scheme with the tightest fixed channel 

assignment scheme. 

2.2. Linear Case 

Consider again Figure 1. For this simple linear cellu- 

lar system, the distance measure d(X,Y) between two 

cells X and Y is typically given as d(X, Y) = \cx — cy |, 

where Cx and cy denote the positions of the centers of 

cells X and Y, respectively. Suppose that the minimum 

reuse distance is A = rL, where L is the width of a sin- 

gle cell and r is an integer. Cells that are assigned the 

same set of channels are called co-channel cells. There- 

fore, in the tightest fixed channel assignment scheme, 

co-channel cells are exactly r cells apart. For example, 

in Figure 1, cells A and A' are co-channel cells. Let N 

denote the total number of distinct channels that are 

available in this linear cellular system. Thus, the to- 

tal number of distinct channels available for each cell is 

N/r. The integer r is called the reuse factor, being the 

ratio of the total number of channels in the system to 

the number of channels allowed to be used in a single 

cell. 

To assign channels to meta-cells, we next define the 

distance measure d((X, Y), {X', Y')) between two meta- 

cells (X, Y) and (X',Y'). Recall that in our scheme, 

when a channel is assigned to a meta-cell, it can be 

used by a mobile user in any cell belonging to that 

meta-cell. Thus, we have to ensure that the distance 

measure between any component cells of two meta-cells 

assigned the same set of channels complies with the min- 

imum reuse distance requirement. Consequently, we 
define d((X, Y), (X',Y')) as the minimum of the dis- 

tance measures between the component cells of meta- 

cells (X,Y),{X'Y')y i.e., 

d((X,Y),(X',Y')) = 

mm{d(X,X'),d(X,Y'),d(Y,X'),d(Y,Y')}. (2.1) 

For example, in Figure 1, the distance measure between 

meta-cells (A, B) and (^4', B') is given by (r— \)L, which 

is the distance between cells B and A'. 

We call meta-cells that are assigned the same set 

of channels co-channel meta-cells. To allocate a maxi- 

mum number of channels to each meta-cell, co-channel 

meta-cells have to be deployed as close as possible to 
maximize channel reuse efficiency. Therefore, we assign 

the same set of channels to meta-cells that are exactly 



the minimum reuse distance apart, i.e., rL in this case. 

For example, in Figure 2, meta-cells (A, B) and (B', C") 

are assigned the same set of channels (i.e., they are co- 

channel meta-cells). Consider a particular channel in 

this set. Now, when the channel is used simultaneously 

in meta-cells (A,B) and (B',C), the shortest possible 

reuse distance is between cells B and B', which is ex- 

actly the minimum reuse distance rL. Thus, the same 

channel can be independently used in cell A or B and 

cell B' or C". 
It is easy to show that, using our scheme, each 

meta-cell is assigned N/(r + 1) distinct channels. In 

other words, the reuse factor of our channel assignment 

scheme is 

r' = r+ 1. (2.2) 

This reuse factor is the same as that of the channel 

assignment scheme in [15]. 
The linear case described above is important in its 

own right. For example, it accurately models cellular 

configuration on highways and rural areas. However, 

to handle cellular systems in more metropolitan-type 

environments, we next discuss our channel assignment 

in the planar case. 

2.3. Planar (2-D) Case 

In the planar or 2-D case, the cellular configuration 

is usually assumed to be hexagonal. This means that 

the entire area of interest is covered with equal-sized 

hexagonal cells, as shown in Figure 3. As in the linear 

case, the distance d(X, Y) between two cells X and Y 

is typically defined as the distance between their cen- 

ters. Let AT denote the total number of distinct channels 

available in this hexagonal cellular system. In the tight- 

est fixed channel assignment scheme, co-channel cells 

are exactly a distance of A, the minimum reuse dis- 

tance, apart. Consequently, each cell is assigned N/R 

channels, where R is the minimum reuse factor. It has 

been shown in [22] that R can be determined from A 

by R = (l/3)(A//>)2, where p is the radius of a single 

cell. In general, the minimum reuse factor R can be 

represented by 

R = p2+pq + q, (2.3) 

where p and q are nonnegative integers satisfying p+q > 

2. Without loss of generality, we assume that q > p in 

the following. 

As in the linear case, a meta-cell here consists of two 

adjacent neighboring cells. To allow for channel sharing, 

we assign channels to meta-cells, as in the linear case, 

under the minimum reuse distance constraint in terms 

of meta-cells. For our purpose, the distance measure 

between two meta-cells is defined in the same way as 

in Equation (2.1). Again, the main idea of our channel 

assignment scheme is to deploy co-channel meta-cells 

as close as possible, under the minimum reuse distance 

constraint, to maximize channel reuse efficiency. In the 

remainder of this section, we describe this channel as- 

signment scheme in detail. 

Consider an arbitrary cell Ao in the hexagonal cel- 

lular system as shown in Figure 4, and establish a set 

of coordinates i-j originating at the center of cell A0, 

where the two axes form a 60" angle, and the unit dis- 

tance along the axes is \/3/>- Then, the minimum reuse 

distance A is equal to R coordinate units in this set 

of coordinates. The center of any hexagon Z can be 

designated by a pair of coordinates (iz,jz), with iz 

and jz integers. Let Bo, Co, Do, Eo, F0, and Go 
denote six hexagons with centers at the coordinates 

(p,«)> (-«,? + «). (-p-q,p), (-P,-9), (q,-p-Q), 
and (p+q,— p), respectively (see Figure 4). Note that 

their distance to cell A0 (centered at (0,0)) are equal 

and given by p2 + pq + q2 = R units. In the tightest 

fixed channel assignment scheme, cells B0, Co, Do, Eo, 

Fo, and Go are assigned the same set of channels as cell 

A0. 
Let Ai be the adjacent right neighboring cell of Ao 

along the i-axis as shown in Figure 4, i.e., (1^,;^) = 

(»A0 + I.JAO) = (1>°)- We next focus on meta-cell 
(A0,Ai) as the reference meta-cell. Note that in the 2- 

D case, meta-cells may have three distinct orientations 
(the orientation of a meta-cell is the directional relation- 

ship between its two component cells). Each meta-cell 

may have six neighboring co-channel meta-cells. Con- 

sequently, there are many different ways to deploy co- 

channel meta-cells, including irregular (non-repetitive) 

deployment patterns. For the sake of simplicity and 

regularity, in the following we restrict ourselves to de- 

ployment methods in which all co-channel meta-cells 

are of the same orientation. In other words, for any 

co-channel meta-cell of (A0, Ai) of interest, two compo- 

nents are adjacent along the i-axis. Therefore, we can 

identify any co-channel meta-cell of reference meta-cell 

(A0,Ai) by its left component (the component cell that 



is positioned in the left side along the i-axis). 

It turns out that for different values of p and q, we 

need different methods to deploy co-channel meta-cells 

of reference meta-cell (A0,Ai), depending on whether 

p+l > q. For simplicity, we assume that p+1 > q. (The 

case where p + 1 < q is more involved and is therefore 

omitted in the interest of space; we refer to our technical 

report for the details [16]). The values of R within 

this category are 3,7,12,19, etc. It can be shown that 

in this case, as illustrated in Figure 5, the meta-cells 

whose left components are respectively Bi, C'o, -D_ i, 

E-i, FQ, and G\, can be deployed as co-channel meta- 

cells of reference meta-cell (AQ,AI), where the centers 

of cells Bi, D-i, E-i, and G\ are given respectively as 

follows: (I'BLJBJ = (p+l,q), (ID.^JD^) = {-p- 

q- l,p), (*£_,, JE-J = (-P- 1,-g), and (ionioj = 

(p + <7 +1) —p)- Furthermore, we have shown that when 

assigning channels according to this co-channel meta- 

cell deployment, the channel reuse factor is 

R' = R + p + q. (2.4) 

The detailed proofs and further discussions are provided 

in [16]. 

3. Channel Sharing Protocol 

In the previous section, we described our channel 

assignment scheme, in which channels are assigned to 

meta-cells instead of cells. Channels assigned to a meta- 

cell can be shared by any of its component cells. We 

next develop a channel sharing protocol to exploit this 

sharing feature of our scheme. Specifically, whenever 

a new call arrives at a given cell, the protocol deter- 

mines whether or not the call can be accommodated, 

and which channel is to be used to serve the call. Here 

we do not distinguish between new and handoff call re- 

quests. We will explicitly address the handoff problem 

later in Section 4.2. 

3.1. Protocol Description 

To describe our channel sharing protocol, we focus 

our attention on a particular (arbitrary) cell, which we 

call the local cell. Recall from the previous section that 

using our channel assignment scheme, each cell in the 

cellular network is always covered by several overlap- 

ping meta-cells, called the covering meta-cells of that 

cell. For example, in the linear case, each cell is covered 

by two meta-cells, while in the 2-D case with a hexago- 

nal configuration, each cell is covered by six meta-cells. 

We call channels that are assigned to the covering meta- 

cells of the local cell the accessible channels, since users 

in the local cell may have access to those channels. The 

entity that manages those accessible channels is called 

the channel controller, which resides in the base-station 

of the local cell. The channel controller only needs to 

exchange channel usage information with channel con- 

trollers of adjacent cells, as will be described in this 

section. This exchange of information can be done in 

a variety of ways, such as via an out-of-band signaling 

channel (or a wired channel) that connects the base- 

stations of the local cell and its adjacent cells. 

In our channel assignment scheme, each accessible 

channel is shared between the local cell and one of its 

adjacent cells. Therefore, for each channel at any given 

instance, either the local cell or one of the adjacent cells 

can use the channel. In other words, at any given in- 

stance, not all the accessible channels can be used by 

the local cell. Those channels that can be used by the 

local cell are called enabled channels. To coordinate 

the use of accessible channels between the local cell and 

the corresponding sharing cells, the local cell maintains 

a look-up table, in which each accessible channel oc- 

cupies one entry consisting of the following two fields. 

The first field indicates the current state of an associ- 

ated channel. The state in the first field may be "DIS- 

ABLED", "IDLE", or "BUSY", described as follows. 

An accessible channel labeled "DISABLED" is not en- 

abled in the local cell. This indicates that the channel is 

concurrently enabled in the sharing cell associated with 

that channel. The local cell can use only those acces- 

sible channels labeled "BUSY" or "IDLE" (i.e., these 

channels are the enabled channels in the local cell). In 

this case the labels further indicate whether channels 

are currently occupied by mobile users in the local cell. 

The second field simply records the names of the shar- 

ing cells associated with the accessible channels. 

Initially, for each accessible channel, the channel con- 

troller may arbitrarily set its state in the look-up table 

of the local cell "IDLE" or "DISABLED"; concurrently, 

the state in the look-up table of the sharing cell associ- 

ated with that accessible channel must be inversely set 

"DISABLED" or "IDLE", respectively. 

Our protocol can be described in three main parts, 

corresponding to three different possible scenarios:  ar- 



rival of a call, sharing a request from a sharing cell, and 

departure of a call. 

3.1.1. Arrival of a call 

The protocol for handling the arrival of a call is 

shown in Figure 6. When a call arrives, the channel con- 

troller checks if there are any accessible channels labeled 

"IDLE" in the look-up table of the local cell. If there 

are, the arriving call is accepted and assigned an idle 

channel, and the state of that channel is then changed 

to "BUSY." Otherwise, the channel controller attempts 

to obtain an idle accessible channel from some sharing 

cell, as follows. The channel controller first looks up all 

accessible channels currently labeled "DISABLED" in 

the local cell and obtains a list of the sharing cells as- 

sociated with those "DISABLED" accessible channels. 

The channel controller then chooses one of the sharing 

cells on this list and sends it a sharing request. The 

sharing cell, upon receiving the sharing request, then 

executes the procedure in Section 3.1.2. If the sharing 

request is granted, the channel controller accepts the ar- 

riving call by assigning the accessible channel specified 

in the return message from the sharing cell, and setting 

the state of that channel "BUSY." If the request is de- 

nied, the channel controller proceeds to send another 

sharing request to one of the remaining sharing cells on 

the list. The process is continued until the sharing re- 

quest is accepted or denied by all sharing cells on the 

list, in which case the call is rejected (blocked). The 

way to choose one of the sharing cells for directing a 

sharing request may be totally random, as done later in 

this paper for simplicity, or may follow some heuristic 

rules, such as starting from the one associated with the 

largest number of accessible channels currently labeled 

"DISABLED" in the local cell. 

3.1.2. Sharing request from a sharing cell 

The protocol for handling the sharing request from 

a sharing cell is illustrated in Figure 7. When a shar- 

ing request is received from a sharing cell, the channel 

controller first checks whether there is any accessible 

channel U, associated with that sharing cell, currently 

labeled "IDLE" in the local cell. If so, the channel 

controller grants the sharing request by sending back 

the identification number of channel U in the return 

message, and setting channel U "DISABLED" in the 

local look-up table.   Otherwise, the channel controller 

attempts to obtain such an idle channel U by swap- 

ping channels as follows. The channel controller checks 

whether there is any accessible channel V currently la- 

beled "IDLE" in the local cell. If so, the channel con- 

troller finds a user currently using an accessible channel 

U associated with the sharing cell (we can always find 

such a user because, from Section 3.1.1, a sharing re- 

quest is directed to the local cell only if in the sharing 

cell there are sharable channels labeled "DISABLED", 

which must be either "BUSY" or "IDLE" in the lo- 

cal cell). That user then releases channel U and grabs 

channel V, so that the channel controller can grant the 

sharing request by returning the identification number 

of channel U and setting channel U as "DISABLED" 

in the local look-up table. If no accessible channels are 

in the "IDLE" state, the channel controller rejects the 

sharing request, for simplicity, as illustrated in Figure 7. 

For example, suppose that in the linear cellular sys- 

tem shown in Figure 1, cell A, öfter receiving a call 

request, sends a sharing request to cell B. The channel 

controller in cell B first checks whether there is any idle 

channel U of set I in cell B (see Figure 2). If so, channel 

U is labeled "DISABLED" in cell B and consequently it 

can be assigned to that call arrival and labeled "BUSY" 

in cell A. Otherwise, the channel controller then checks 

whether there is any idle channel V in cell B, which 

in this case must belong to channel set II. If so, the 

channel controller lets a user, who is currently using a 

channel U of set I in cell B, grab channel V, so that 

channel U can be released to cell A. Otherwise, the 

sharing request is rejected, according to the protocol of 

Figure 7. 
It should be pointed out, however, that even in the 

above case, rejecting a sharing request may not be nec- 

essary. Instead, the channel controller may further send 

another sharing request to the sharing cells of the local 

cell, the same way as in Section 3.1.1, so that the chan- 

nel controller may obtain an idle, accessible channel and 

grant the original sharing request. This process may 

be repeated from cell to cell (i.e., sharing requests are 

propagated from one cell to another) until one of the 

sharing requests can be granted. We will quantitatively 

investigate the performance improvement when apply- 

ing this sharing propagation strategy in Section 5.3. 



3.1.3. Departure of a call 

Figure 8 depicts the protocol to handle the scenario 

when a call leaves the local cell. This scenario arises 

when a call terminates in the local cell, or when a call 

migrates to another cell. In this case, the channel con- 

troller simply labels the associated channel "IDLE." 

Consider again the example in the last section. When 

channel U, which was granted from cell B to cell A 

by sharing, is released, it remains "IDLE" and is not 

immediately returned to cell B (unless there is a sharing 

request from cell B). 

3.2. Salient Features of the Channel Sharing Protocol 

The following are some of the important features of 

our channel sharing protocol: 

1. Channel sharing within a meta-cell is localized 

between two adjacent cells and can therefore be done 

in a decentralized fashion. No global coordination is 

necessary in our protocol, thus facilitating implementa- 

tion. At the same time, our channel assignment scheme 

ensures that there is no co-channel interference due to 

channel movement. The major computational effort in 

the local cell includes communication with the sharing 

cells, channel swappings, and simple table look-ups. We 

will investigate the complexity of our protocol later in 

Section 5.1 by estimating the expected number of inter- 

cell communication and channel swappings for each call 

arrival. 

2. Channel utilization is improved because channels 

are assigned to meta-cells instead of to individual cells. 

Clearly, an idle channel can be accessed by calls in ei- 

ther of its component cells, thus effectively reducing the 

fraction of idle periods of channels. Consequently, the 

blocking of handoff requests occurs relatively rarely in 

our protocol because it requires all three of the follow- 

ing conditions to be simultaneously true: 

(a) All sharable channels between the handoff originat- 

ing cell and the destination cell are already occupied 

in the destination cell. 

(b) All channels in the destination cell are occupied. 

(c) In each of the adjacent cells of the destination cell, 

either there are no idle channels, or there are no 

channels sharable with the destination cell. 

For example, suppose a user in the local cell desires to 

move into a neighboring (destination) cell.   If there is 

a channel in the local cell (whether busy or idle) that 

can be shared with the destination cell, then the user 

can move to the neighboring cell without experiencing 

handoff blocking. In this case, the first condition above 

does not hold. 

3. Handoff processing may be easier when using our 

protocol. A special case of the example scenario pointed 

out above is when a user moves from one cell to another, 

and the user is using a sharable channel between the two 

cells. In this case, not only can the user change cells 

with no risk of handoff blocking, but the processing of 

the handoff can also be simplified by continuing the ser- 

vice using the same channel during handoff. Moreover, 

if we model and predict the mobility of a particular user, 

we can further reduce the incidence of handoff blocking 

by reassigning (if necessary) to the user a channel that 

can be shared with the next destination cell. The ben- 

efit here is that we effectively have a mechanism for 

processing handoffs by anticipating the movement of a 

mobile user, and the time available to do this process- 

ing is the time a user spends in a given cell. This is in 

contrast to the potentially much shorter time available 

to conventionally process a handoff call, typically only 

when a user is at the boundary between two cells. This 

feature is especially important for cellular systems with 

small-sized cells, such as micro-cellular systems. 

4. Refinements 

In the previous section, we presented the basic as- 

signment scheme and protocol for our channel sharing 

strategy. To make our scheme practically useful, we 

next discuss two refinements. 

4-1. Combined Scheme 

It is instructive to compare the effective channel ca- 

pacity using the LCS scheme and the tightest fixed 

channel assignment scheme. In our scheme, the maxi- 

mum possible channel capacity of each cell is clearly just 

the total number of distinct accessible channels for each 

cell. As we pointed out above, in an individual cell, the 

number of accessible channels in our scheme is generally 

larger than that of the fixed scheme. Note that, how- 

ever, this number is an upper bound on the effective 

channel capacity since it assumes that the statistical 

sharing advantage can fully be exploited. On the other 

hand, if we totally ignore the statistical sharing advan- 



tage, we may then obtain a lower bound for the channel 

capacity. To be specific, we equally distribute channels 

that, are assigned to each meta-cell into two component 

cells and then count the total number of distinct chan- 

nels now available for each cell. For example, the lower 

bound capacity in the linear case is £7 channels. Hence, 

the effective channel capacity using the LCS scheme is 

bounded by these two extreme scenarios and depends 

on the extent to which the statistical sharing advantage 

is actually obtained. 
Next, we present a combined scheme that attempts 

to maximize the effective channel capacity for each cell. 

Specifically, we divide all the TV channels into two dis- 

tinct groups of size N\ and N2 such that 

1 ; N-, No riven by d = -^ - -pr JVo 

r(r + l) 

N = Nt + N2. (4.1) 

The first group of Ni channels is assigned to cells using 

the tightest fixed channel assignment scheme and thus 

cannot be shared between adjacent cells. The remaining 

group of N2 channels, however, is assigned to meta-cells 

according to our channel sharing assignment scheme, 

and can be shared within meta-cells, the same as in the 

previous sections. 

The combined scheme above defines a family of chan- 

nel assignments that encompasses both the fixed and 

the basic LCS schemes. At one end of the spec- 

trum, where N2 = N (corresponding to the basic LCS 

scheme), the maximum number of channels are assigned 

to meta-cells. In this case, every channel can be shared 

by two adjacent cells. Thus, the upper bound of the ef- 

fective channel capacity is largest, but the lower bound 

is smallest at the same time. With decreasing N2, the 

upper bound is decreased while the lower bound is in- 

creased, until N2 = 0 (corresponding to the tightest 

fixed channel assignment) where there is no channel 

sharing. In this case, the upper and lower bounds coin- 

cide and are equal to the effective channel capacity. 

Varying N2 allows us to maximize the effective chan- 

nel capacity. Specifically, the parameter N2 enables 

us to trade off the potential advantage from statisti- 

cal sharing with a reduction in the average number of 

channels for each cell. The larger the value of N2 in the 

combined scheme, the more the gain we expect from 

statistical sharing, but at the same time the higher the 

price we pay by reducing the average number of chan- 

nels for each cell. The reduction in this average num- 

ber, relative to its maximum value when N2 = 0, is 

in the linear case, or 

d = J£L_ !h. - N2^R) in the 2-D case, while the num- 

ber of sharable channels for each cell is s = -f in the 

linear case, or s N2 
R' in the 2-D case. Further, s and d 

are related by j = r in the linear case, or | = R>-R 
m 

the 2-D case. Clearly, for the same price we pay in the 

combined scheme in terms of d, the number of sharable 

channels s increases with increasing r in the linear case 

AT? in the 2-D case. R'-R 
Figure 9 illustrates the partitioning of accessible 

channels in a cell into the two groups described above. 

The number of accessible channels in each of these 

groups is Ni/R and 2N2/R', respectively (in the 2-D 

case). Note that the number of enabled channels in the 

first (Nx/R) group is fixed, whereas the number of en- 

abled channels in the second group can vary between 0 

and 2N2/R'. 

4.2. Threshold Handoff Scheme 

In our basic LCS scheme, we do not distinguish be- 

tween new and handoff call arrivals. However, studies 

have shown that one of the most important user con- 

cerns is that service not be cut off during an on-going 

call. Therefore, blocking a handoff arrival is even less 

desirable than blocking a new arrival. Various schemes 

have been proposed to prioritize handoff calls (e.g., 

[10]). The threshold scheme is particularly well known. 

Specifically, a number of channels can be reserved solely 

for the use of handoffs, allowing both handoff and new 

calls to compete for the remaining channels. 

To illustrate the main idea underlying the threshold 

scheme, we now describe a popular scheme called chan- 

nel reservation. Consider the tightest fixed channel as- 

signment. A threshold K is set in each cell (K < N/r 

for the linear case and K < N/R for the 2-D case). If 

the number of channels currently used in the cell is be- 

low K, both new and handoff calls are accepted. Other- 

wise, if the number of channels used exceeds this thresh- 

old, incoming new calls are blocked and only handoff 

calls are admitted. 
To prioritize handoff calls in our LCS scheme, we 

apply a threshold idea similar to the channel reservation 

scheme above. Our threshold scheme is composed of 

two parts, as described next. Note that the threshold 

restrictions apply only to new call requests. 
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4-2.1. A'i threshold 

The first part of our threshold scheme is the same 

as the channel reservation scheme. Specifically, a new 

call arriving at a cell will be blocked if the number of 

current users in that cell exceeds a threshold A'I, with 

I<i < ^ + 7T in the linear case or A'I < ^ + 7p2 in 

the 2-D case. As in the case of the channel reservation 

scheme (for the tightest fixed channel assignment), here 

also we set the threshold K\ to avoid overall excessive 

use of accessible channels by new calls. For example, in 

some scenarios, accessible channels may be accumulated 

in one cell because of channel movement. In this case, 

it is desirable to limit excessive access to those channels 

by new calls, waiting instead for potential sharing re- 

quests from sharing cells. Note that the A'i threshold 

takes effect only if the number of enabled channels (as 

described in Section 3.1) is greater than A'i (otherwise, 

we apply another threshold, K2, described in the next 

section). 

Figure 10 provides an illustration of the A'i threshold 

scheme. In the figure, we assume that the number of 

enabled channels is greater than K\. As illustrated, 

if the number of channels being used does not exceed 

K\, then new calls are accepted; otherwise, they are 

blocked. 

Note that to achieve a given quality of service re- 

quirement for handoff, the threshold Ai in our scheme 

may generally be chosen higher than A' in the channel 

reservation scheme because now handoff requests have 

access to more channel capacity due to sharing. In other 

words, we need to reserve fewer channels a priori for 

handoff calls. This helps increase the efficiency of our 

handoff scheme compared to the conventional reserva- 

tion scheme, as will be demonstrated in Section 5.2. 

4.2.2. K2 threshold 

If the new call is not blocked by the first part of the 

threshold scheme, it is accepted if there are idle channels 

in the cell. Otherwise, if there are no idle channels (from 

which we infer that the number of enabled channels is 

less than or equal to A'i), we then attempt to obtain 

an accessible channel from sharing cells, as described in 

Section 3.1. The second part of the threshold scheme is 

now applied to limit the sharing accessibility associated 

with individual sharing cells. Specifically, we first set 

the value of a second threshold A'2, where A'2 < ^f in 

the linear case, or A2  <  jfi in the 2-D case.   Then, 

in the protocol described in subsection 3.1.1, we send 

out sharing requests only to the adjacent cells that have 

fewer than A'2 sharable channels currently being used 

in the local cell. In this way we prevent new calls from 

excessively using up sharable channels associated with 

any particular sharing cell, and thus prioritize potential 

handoffs from that sharing cell. 

Figure 11 illustrates the A'2 threshold scheme. Note 

that the number of enabled channels here is not more 

than A'i (for otherwise the A'2 threshold does not take 

effect). In the figure, we use the term rich neighbor 

to denote a neighboring cell that has fewer than A'2 

sharable channels in the local cell. If the neighboring 

cell has more than or equal to A'2 channels in the local 

cell, we use the term poor neighbor. In other words, 

we send out sharing requests for new calls only to rich 

neighbors. 

5. Simulation Results 

In this section, we provide simulation results to com- 

pare the performance of our LCS scheme with the tight- 

est fixed channel assignment scheme. We consider the 

following two scenarios. In the first scenario, we do not 

distinguish new calls from handoff calls in the channel 

assignment. In this case, the quality of service (QoS) 

measure that we are interested in is Pb, the blocking 

probability of a call arrival into a cell. In the second 

scenario, we investigate the performance of our LCS 

scheme with handoff prioritization, as well as the chan- 

nel reservation scheme based on the tightest fixed chan- 

nel assignment. Here, we distinguish between the block- 

ing of new and handoff calls. The QoS measures we are 

interested in this case are: PbN, the blocking probabil- 

ity of new calls, and PbH, the blocking probability of 

handoff calls. We conclude the section by showing an 

example of further improvements that may be obtained 

if sharing requests are allowed to propagate across more 

than one cell. 

We investigate both the linear and 2-D hexagonal 

cases by simulation. Our simulation model for the linear 

cellular system consists of 30 cells, where each cell has 

two adjacent cells. The boundary cells on the two sides 

are then connected to each other to avoid the "edge" 

effect at the boundaries. To model the 2-D cellular sys- 

tem, we use a 36-cell configuration, with each cell hav- 

ing six adjacent cells. Again, the cells on the boundary 
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of one side of the configuration are connected to the 

cells on the boundary of the other side. For both the 

linear and 2-D cases, the call traffic is assumed to be 

symmetrically distributed over all the cells. The simu- 

lation is discrete-event driven. There are three types of 

events: new call request arrival, handoff request arrival, 

and call termination. New calls are assumed to arrive 

at each cell according to a Poisson process with rate A„. 

The time until a call terminates is assumed to be expo- 

nentially distributed with mean \/\i. The time a user 

spends in a cell before making a handoff request to go to 

another cell is assumed to be exponentially distributed 

with mean 1/A#. In our simulation model, users in a 

cell may direct a handoff request to each of the adjacent 

cells with equal probability. The blocking probabilities 

PbN and PbH are estimated as follows: 

number of new call requests rejected . 
bN ~ number of new call requests generated 

PbH 
number of unsuccessful handoffs (5.2) 

number of handoff requests generated 

To estimate PbN and PbH, we count the events of new 

call request generations, handoff request generations, 

new call requests rejected, and handoff requests re- 

jected. Since we are interested in the performance of 

a typical cell, the statistics obtained are averaged over 

all cells. 

5.1. Channel Allocation without Handoff 

In this study, we do not consider handoffs. Further, 

in our simulation, users that arrive in each cell do not 

migrate to other cells. This is typical of assumptions 

made in the literature (e.g., in [9]). 

Maximum call arrival rate 

We compare the maximum call arrival rate A„ that 

can be admitted by our LCS scheme and the tightest 

fixed channel assignment scheme, respectively, for vari- 

ous blocking probabilities Pb. More precisely, we define 

the following optimization problem for the LCS scheme: 

maximize An 

subject to Pb < Bmax (5.3) 

The constraint Bmax used in our simulation varies 

between 3 x 10-3 and 5 x 10~2 and the correspond- 

ing maximum value of An is obtained by tuning the 

parameters N2 and A„.  We define a similar optimiza- 

tion problem for the tightest fixed channel allocation 

scheme: maximize*,, An, subject to Pb < Bmax. In Fig- 

ure 12, we plot the optimal values of An versus Bmax for 

both schemes for the linear case with r = 2 and r = 4. 

In Figure 13, we plot the optimal values of A„ versus 

Bmax for both schemes for the 2-D case with R = 3, 7, 

12, and 19. For both figures, we use ^J = 1. To make our 

results comparable for different minimum reuse factors, 

we keep N/r = 15 for all the curves in Figure 12. Thus, 

N = 30 when r = 2, and N = 60 when r = 4. Similarly 

in Figure 13, we set N/R = 15 for all R. 

From Figures 12 and 13, we observe that for any Pb 

constraint, the LCS scheme allows a higher call rate 

than the tightest fixed scheme. For a typical constraint 

of Pb < IGT2, our scheme can admit approximately 20% 

more calls into the network than the fixed scheme with 

r = 4 in the linear case or with R = 7 in the 2-D case. 

Note that in the 2-D case, even when the minimum 

possible reuse factor R = 3, our scheme outperforms 

the fixed scheme more than 10%. Of course, when the 

reuse factor becomes larger, for example for R = 19, 

the improvement is about 30%. Also, as shown in the 

figures, for lower blocking probability constraints, the 

improvement is even greater. 

An observation from Figures 12 and 13 is that the 

improvement of the LCS scheme becomes more signifi- 

cant as the value of reuse factor increases. This can be 

explained as follows. First note that in Figures 12 and 

13, we keep N/r and N/R fixed, respectively. In the 

tightest fixed channel allocation scheme, as long as we 

keep N/r or N/R (the number of channels allocated per 

cell) fixed, the performance metrics remain unchanged. 

This is why in each figure, for the tightest fixed alloca- 

tion scheme, we only have one curve for different val- 

ues of r (or R), since N/r (or N/R) is kept constant. 

However, when we increase r (and correspondingly in- 

crease N), in the case of the sharing scheme (for the 

linear case), the price we need to pay for channel mo- 

bility N/r- N/{r + 1) = l/(r(r+l)) decreases. Hence, 

the improvement of our sharing scheme over the FC A 

scheme is also higher. 
Another interesting observation in our simulation is 

that for any given value of R, the optimal tuning pa- 

rameter N2 takes on only a few values. For example, in 

Figure 13, N2 = 15,50,96 (^f ^ 3, 5,6), for the curves 

of R = 3,7,12, respectively. That is, the optimal N2 

actually remains constant for each of the corresponding 
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curves. When R = 19, N2 = 192 (^ = 8) for 5max 

less than 2.44 x 10"2, and N2 = 96 (^f = 4) for the 

remaining portion of the curve. Moreover, if we use 

N2 = 192 for the entire curve, the performance degra- 

dation, in terms of A„ for a given Bmax, is less than 2%. 

In fact, we have observed that the performance metric 

is insensitive to moderate variations in N2 around the 

optimal value. For simplicity, we will use a fixed value 

of N2 for each individual curve in the next section. 

We next investigate the protocol complexity for those 

optimum combined LCS schemes obtained for Fig- 

ures 12 and 13. We first estimate the expected number 

of inter-cell communications used to serve a call arrival, 

by dividing the total number of sharing requests that 

have been submitted in simulation to the total number 

of call arrivals. Here we count all sharing request sig- 

nals, including those that are not granted. We find that 

the expected number of sharing requests per call arrival 

does not exceed 0.2 in all the cases shown in Figure 12, 

or 0.6 for those in Figure 13. There is a difference be- 

tween the linear and 2-D cases because, in the latter, 

each cell has more adjacent cells, and thus more sharing 

requests have to be sent. Note that the expected num- 

ber of sharing requests per call arrival depends on both 

the traffic load and the combined LCS scheme (7Vi, N2). 

For a given Ni, N2 setting, it increases with the traffic 

load. 

We next estimate the expected number of intra-cell 

channel swappings needed to serve a call arrival, by di- 

viding the total number of channel swappings observed 

in simulation to the total number of call arrivals. We 

find that the maximum number of channel swappings 

per call arrival needed is less than 0.04 for the com- 

bined LCS schemes in Figure 12, or less than 0.25 for 
those in Figure 13. These results suggest that the com- 

putational overhead to implement our protocol is not 

significant. 

5.2. Channel Allocation with Handoff 

In this study, we evaluate the performance of our 

LCS scheme for the handoff problem by taking into 

account handoffs in the simulation traffic model. To 

systematically compare our handoff scheme with the 

channel reservation scheme, we investigate three design 

problems. Note that in reality the parameters N2, Ä'i, 

and K2 in the LCS scheme can only be optimized ac- 

cording to one design criterion, and that generally the 

optimal parameters for one problem may not be opti- 

mal for another. The reason that we provide compar- 

isons for three optimization problems is to evaluate our 

scheme under a variety of design criteria. In the interest 

of saving space, we provide only simulation results for 

the 2-D case. 

Minimum blocking probability of new calls 

Here we provide plots of PbN under varying load con- 

ditions for the LCS and reservation schemes. The per- 

formance measures depend on the parameters N2, K\, 

and K2 in the LCS scheme, and the parameter K in 

the reservation scheme. To meaningfully compare our 

combined scheme with the reservation scheme, we de- 

termine the optimal values of PbN for the two schemes, 

given a constraint on PbH- Here, for simplicity, we use 

a fixed value of N2 in the LCS scheme for a given reuse 

factor. Therefore, in the LCS scheme, to appropriately 

choose Ä'i and K2, we consider the following optimiza- 

tion problem: 

minimize PbN 

subject to PbH < H„ (5.4) 

where Hmax denotes a prespecified maximum level for 

PbH- A similar optimization problem can be defined 

for the reservation scheme, where the decision variables 

are now replaced with the threshold parameter K. For a 

fair comparison of the LCS scheme with the reservation 

scheme, we calculate the optimal values of PbN for the 

two schemes, given the same Hmax. 

Figure 14 shows plots of the optimal values of PbN 

for the reservation and LCS schemes under varying An. 

For this figure we use the following parameters: XH = 5, 

/i = 1, N/R = 15, (for example N = 45 when R = 3), 

and N2 = 30,90,144,264, for R = 3,7,12,19, respec- 
tively. The call handoff blocking probability PbH is con- 

strained by Hmax = 10-4, a typical value. The new 

arrival rate An ranges from 6 to 11. From the figure, 

we can see that these traffic loads are, in fact, quite 

heavy for the channel reservation scheme, because in 

order to meet the QoS constraint of PbH, the threshold 

K must be set sufficiently low, thus resulting in fairly 

high new call blocking probability {PbN > 10_1 for the 

whole range of An in the figure). Figure 14 shows that 

the combined LCS scheme achieves uniformly lower val- 

ues of PbN than the reservation scheme. We also notice 

that at low traffic load, there is virtually no new call 
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blocking for the LCS scheme. To provide some insight 

into the optimization, in Table 1 we list the set of Kx 

and I<2 data that were used to generate the curve for 

R = 7 in Figure 14. 
Note that in Figure 14, some of the curves for the 

LCS scheme do not start from A„ = 6. The reason is 

that when An is low, PbN is too small to be estimated 

accurately in our simulation. The same applies to Fig- 

ure 15. 

Maximum call arrival rate 
In this experiment, we compare the maximum new 

call arrival rate An that can be admitted by the LCS 

and the reservation schemes for various handoff block- 

ing probabilities PbH- More precisely, we define the 

following optimization problem for the LCS scheme: 

maximize An 
KltK2,Xn 

subject to Pbjy < N„ 

PbH = H 

(5.5) 

Here, the constraint H for PbH is varied between 10-6 

and 10"2 and the corresponding maximum value of An 

is obtained. Again, a similar optimization problem is 

defined for the reservation scheme by replacing K\, and 

I<2 by K. In Figure 15, we plot the optimal values of 

A„ versus PbH for the LCS scheme and the reservation 

scheme scheme with R = 3, 7, 12, and 19. For this 

figure we use the following parameters: XH = 5, fi = 1, 

N/R = 15, Nmax = IGT2, and N2 = 30,70,144,264, for 
R = 3, 7,12,19, respectively. We observe that the LCS 

scheme allows a higher new call rate than the reserva- 

tion scheme over all values of PbH ■ For a typical value 

of PbH = 10~4, the LCS scheme with R = 19 can admit 

approximately 64% more calls into the network than the 

reservation scheme. For the same Pbn constraint, the 

performance improvement for the LCS scheme is about 

50% when R = 7, a typical reuse factor value, and is 

20% when fi = 3, the minimum possible value. As is 

also shown in the figure, for lower handoff probability 

constraints, this difference is even larger. Improving the 

admissible arrival rate results in increased revenue for 

the network provider. 

Maximum utilization 

From the point of view of a network provider, a useful 

parameter of interest is the normalized channel utiliza- 

tion, 7, defined as 

average number of users in one cell __     _ .  
total number of available channels in one cell 

where the total number of available channels in one cell 

is N/R. The parameter 7 is directly related to the 

revenue of a cellular network because it incorporates 

both new and handoff calls. 

To plot the values of 7 under varying loads for the 

LCS scheme, we define the optimization problem 

maximize 7 
KUK3 

subject to PbH < H„ (5.7) 

Once again, we define a similar optimization problem 

for the reservation scheme by replacing the decisions 

variables by K. 

In Figure 16, we plot values of 7 under varying An. 

The parameters used for this figure are: XH = 5, n = 1, 

N/R = 15, Hmax = IO-4, and JV2 = 30,90,144,264, 

for R = 3,7,12,19, respectively. The LCS scheme 

achieves uniformly higher values of 7 under various 

loads. The difference between the combined and reser- 

vation schemes is most apparent at high loads. At such 

loads, a low value of K is required in the reservation 

scheme to maintain the QoS constraint on PbH, thus 

resulting in a low value of 7. On the other hand, due 

to channel sharing, the threshold to maintain the QoS 

constraint on PbH is not as low. When R - 19, the 

channel utilization for the LCS scheme at high loads 

is over 64% more than the reservation scheme. The 

performance improvement for the LCS scheme is about 

33% for R = 7, a typical reuse factor value, and is 22% 

for fi = 3, the minimum possible value. 

5.3. Sharing requests across more than one cell 

So far, in all of the simulation results shown (Sec- 

tions 5.1 and 5.2), when a sharing request is received 

from an adjacent cell, if the request cannot be granted, 

it is simply rejected. In other words the sharing request 

is allowed to propagate only one step. However, as we 

have discussed earlier in Sections 2.1 and 3.1.2, to fur- 

ther exploit the advantage of channel sharing, we could 

allow sharing requests to propagate across more than 

one cell. Clearly, increasing the number of propagation 

steps will improve performance at the cost of increased 

complexity (due to more sharing requests that need to 

be processed, etc.). 
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We next quantitatively investigate the performance 

improvement as more propagation steps are allowed for 

sharing. For simplicity, we consider the case without 

handoffs, as in Section 5.1. We define the following 

optimization problem for the LCS scheme, similarly to 

that in Section 5.1 (Equation (5.3)): 

maximize An 
A„,JV2 

subject to Pb < Bmax (5.8) 

number of propagation steps < Smax 

For illustration, we show the results for the linear 

case with r = 4 in Figure 17. For this figure, we use the 

following parameters: Bmax = 10~2, \i = 1, N/r = 15. 

The constraint Smax is allowed to vary from 0 to 12 

in our simulation, where Smax = 0 represents the case 

when no sharing is allowed, i.e., the fixed channel as- 

signment scheme. In Figure 17, we plot the optimal 

values of An versus Smax- As expected, for a given con- 

straint of blocking probability, the maximum admissible 

arrival rate increases as more propagation steps are al- 

lowed. The improvement is most significant when the 

value of Smax is small, but it reaches a point of dimin- 

ishing returns around Smax = 6- Hence, depending on 

the allowable implementation complexity and latency, 

one could conceive of improving the performance by 

increasing the maximum allowable propagation steps, 

although only a small increase would be justified. 

6. Conclusion 

We have presented a novel LCS scheme to improve 

system capacity and QoS in wireless cellular systems. 

Our basic idea is to allow channels to be shared be- 

tween adjacent cells without co-channel coordination 

with other cells. For this purpose, we introduce the con- 

cept of meta-cells to facilitate localized channel man- 

agement. Further, to maximize channel reuse efficiency, 

we develop a channel assignment method based on the 

distance measure between meta-cells. We then illus- 

trate our channel assignment for both the linear and 2-D 

hexagonal cellular models. In general, the LCS scheme 

leads to channel access in a statistical multiplexed fash- 

ion, but at the expense of some nominal capacity. An 

attractive feature of the LCS scheme is that it does not 

require complex power control techniques, global chan- 

nel coordination, or on-line optimization, which simpli- 

fies its implementation. 

To make the LCS scheme practically useful, we then 

propose two important refinements, which provide use- 

ful design parameters to maximize system performance 

under various QoS constraints. Via simulation, we com- 

pare the LCS scheme with the fixed channel assignment 

scheme (for channel assignment considerations) and the 

channel reservation scheme (for handoff considerations). 

Simulation results show that our scheme significantly 

improves system capacity over a large range of traffic 

conditions and a variety of QoS requirements, in some 

cases resulting in over 60% better network utilization 

than the channel reservation scheme (in the 2-D hexag- 

onal case). 
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Figure 1. Cells and meta-cells in the linear cellular system. 
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Figure 2. Channel assignment scheme that allows channel sharing in the linear cellular system. 

R=12 

Figure 3. Hexagonal cells in a 2-D system. 

An 6 7 7.5 8 9 10 11 

Ki 24 24 24 24 10 9 8 

K2 3 3 2 2 2 2 2 

Table 1 

Optimal Ki, Ä'2 used for the curve of R = 7 in Figure 14 
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D, 

B, 

C3u 

meta-cell ( A  , A 

Figure 4. The set of i-j coordinates in a 2-D hexagonal system. 

u  /       meta-cell ( G1, G2) 

meta-cell ( F  , F  ) 

meta-cell ( E  , EQ) 

Figure 5. Configuration of co-channel meta-cells in the case of p + 1 > p. 
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Y       ^Accept the call and 
label that channel "BUSY 

'List all the sharing cells thafj 
have accessible channels 
labeled "DISABLED" 

VJn the locel cell 

(Block the call) 

/'Accept the call, and 
label the channel specified 
in the reply message 
"BUSY" 

Figure 6. Protocol for handling a call arrival. 

A sharing request is received^ 
from an adjacent cell 

(Reject the sharing request) 

Find a user using an channel U 
associated with the sharing cell, 
and let the user release U and 
grab V. 

/Label channel U "DISABLED",; 
grant the sharing request by 
sending the identification 

\number of channel U 

nd^ 

Figure 7. Protocol for handling the sharing request from a sharing celi. 
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(A call leaves the local cell) 

(t Label the associated channel "IDLE D 
Figure 8. Protocol for handling a call departure. 

Accessible Channels 

v//////////////)^^^ ... m 
Enabled Channels 

//XZ/yy]     Channels not sharable with any neighbors 

Channels sharable with a neighbor 

Figure 9. Partition of channels in local cell (for 2-D case). 

Y///////////////m$mm 
Enabled Channels 

K 1 

New calls accepted New calls blocked 

Figure 10. Ä'i threshold scheme. 

K. 

Enabled Channels 

V//////////////A • • • 

mm 
K2 

M^ 
-*  —*J 

Poor neighbor 

Rich neighbor 

Figure 11. K^ threshold scheme. 
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Figure 12. Plot of optimal A„ versus Bmax in the linear case, for the problem denned in Equation (5.3). The parameters used in this 

plot are: N/r = 15, ß = 1. 
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Figure 13. Plot of optimal \n versus Bmax in the 2-D case, for the problem defined in Equation (5.3). The parameters used in this 

plot are: N/R = 15, ß = 1. 
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Figure 15. Plot of optimal A„ versus PbH for the problem defined in Equation (5.5). The parameters in this figure are: N/R = 15, 

\H = 5, ß-1, N„ 10-1. 
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Figure 16. Plot of optimal 7 versus A„ for the problem defined in Equation (5.7). The parameters used in this figure are: N/R = 15, 

\H = 5,ß=l, Hmax = IQ-4. 

<< 
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Figure 17. Plot of optimal A„ versus Smax in the linear case, for the problem defined in Equation (5.8). The parameters used in this 

plot are: N/r = 15, Bmax = 10-2, ß - 1. 
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Abstract 

The problem of handoffs in cellular networks is compounded in a LEO satellite-based cellular 

network due to the relative motion of the satellites themselves with respect to a stationary 

observer on earth. But the velocity of motion of mobiles can be ignored when compared to 

the very high velocity of the footprints of satellites. We exploit this property of the LEO 

satellite systems and propose a handoff scheme based on [5] that results in a significant decrease 

in handoff dropping. For the same handoff dropping probability, our scheme has significantly 

lower new call blocking probability than the conventional reservation scheme. We present an 

analytical approximation that is in very good accord with simulation results. 

1     Introduction 

Low Earth Orbit (LEO) satellite systems can provide users low-cost and truly global wireless ser- 

vices regardless of user locations. Hence, there has been a lot of recent interest in developing 

efficient schemes for channel allocation and handoff in such systems [1, 2, 6, 12]. LEO satellite 

systems have certain unique features not found in other satellite and ground-based wireless com- 

munication systems. We list some of them here. 

While the orbits of geo-synchronous satellites are at an altitude of about 36,000 km, LEO 

satellites have their orbits in the 500-2000 km altitude range. Besides reducing the propagation 

delay suffered by signals, the lower orbital altitude also means a lower power requirement at the 

hand-held terminals, thus making the terminal truly portable. LEO satellite systems can provide 

communication services even to those areas that do not have a terrestrial wired network in place. 

In areas where there is a ground-based wireless network in operation, the satellite network can 

either be used in conjunction with the ground-based network for handling overflow traffic, or in 

isolation. Since LEO satellites are smaller and lighter than geo-synchronous satellites, they are 

easily launched. 

'This research was supported in part by AT&T special purpose grant 670-1285-2569, by the National Science 

Foundation through grants NCR-9624525, CDA-9422250, CDA 96-17388, ECS-9410313, and ECS-9501652, and by 

the U.S. Army Research Office through grant DAAH04-95-1-0246. 
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A large number of satellites will be required to ensure that there is always at least one satellite 

in view for every location on earth. For example, the IRIDIUM system envisages a 66-satellite 

network to provide global coverage. A typical LEO satellite system will consist of a number of 

low-earth orbits with a fixed number of satellites going around in each orbit. The footprint of each 

satellite is divided into several cells with each cell being served by a "spot-beam". Like in terrestrial 

cellular systems, a channel that is used in a given cell cannot be used in another cell if it is at a 

distance smaller than the minimum reuse distance. 

Another unique feature relates to the fact that the LEO satellites are not in geo-synchronous 

orbit and hence will not appear stationary to a stationary observer on earth. Instead, the satellites 

move at a constant velocity relative to a stationary observer on earth. Thus, in addition to the 

mobile users' random motion we will have to handle the deterministic motion of the footprint of 

the satellite on earth. Fortunately, the velocity of the footprint on earth is so high that we can 

ignore the velocity of the mobile, in comparison. For example, a typical value for the velocity of 

the footprint is 7.39 km/s. 
Some areas on earth will have overlapping coverage from different satellites. We will be able to 

make use of this macrodiversity advantage to reduce erroneous transmission due to channel noise. 

Additionally, the presence of a large number of satellites ensures survivable communications since 

the malfunctioning of a single satellite will not adversely affect the operation of the network. 

Our objective here is to exploit the fact that the relative motion of the mobile is almost de- 

terministic, to improve the handoff dropping performance of LEO satellite systems. This paper is 

organized as follows: In Section 2, we discuss the importance of handling handoffs efficiently and 

delineate the most important source of handoff call dropping in non-geostationary satellite systems. 

In Section 3, we propose our technique, based on the channel sharing scheme [5], to reduce the 

incidence of handoff call dropping. We will see that our technique is ideally suited to handle the 

handoff problem because the allocation of channels is done with the knowledge of the direction of 

the mobile's relative motion. In Section 4, we provide an analytical approximation for the analysis 

of our handoff technique. In Section 5, we compare our handoff scheme to the fixed channel as- 

signment (FCA) scheme with channel reservation, and present numerical results. Conclusions are 

drawn in the final section. 

2    Problem Description 

We are interested in two different QoS measures: new call blocking probability and handoff call 

dropping probability. Handoff calls are those calls that have already been admitted in some cell 

and later try to move to a different cell. If the new cell to which the call is moving does not 

have an idle channel to allocate to this call, the call is dropped. This is known as handoff call 

dropping. When a cell is unable to allocate an idle channel to a new call, new call blocking occurs. 

Handoff call dropping has the undesirable effect of the user being cut-off in the middle of a call. 

Thus, it is important to reduce handoff call dropping even if it is at the expense of increased new 

call blocking. A very popular approach proposed in terrestrial cellular systems to reduce handoff 



dropping is the reservation policy (sometimes called the guard channel policy) [7]. Other approaches 

include queuing of handoff attempts [3] and queuing of handoff attempts based on measured SIR 

values [11]. 

As we have already observed, ensuring successful handoffs becomes more complicated in the 

LEO satellite scenario due to the motion of the satellites relative to any stationary observer on 

earth. The velocity of motion of the footprints is of the order of kilometers/sec. So, it is common 

to make the simplifying assumption that the velocity of the mobile can be ignored when compared 

to the high velocity of the footprint ([8], [9]). With this assumption, the motion of the mobile 

relative to a satellite becomes totally deterministic. Our view is that we can use this knowledge 

about the mobiles' motion to substantially reduce handoff dropping while, at the same time, not 

adversely affecting the new call blocking probability. 

The following are the assumptions we make in our analysis: 

1. All cells are identical with length L and the relative motion of the mobile is along the length 

of the cells. 

2. The call holding time (or the call duration), td, is exponentially distributed with mean 1/ß. 

3. The velocity of motion of mobiles can be neglected in comparison to the velocity of motion 

of the footprint on earth, V. Equivalently, we assume that the mobiles are moving with a 

velocity of V relative to the stationary satellite footprint. 

4. The distance new calls have to travel before their first handoff attempt is uniformly distributed 

between 0 and L. 

As in [8], we call the cell of origination of a call as its "source cell" and the cell to which a 

call has handed off as its "transit cell". A mobile in its source cell has to travel a distance that is 

uniformly distributed between 0 and L before its first handoff. A mobile in a transit cell has to 

travel a fixed distance of L before its next handoff. Let Y denote the random variable that denotes 

the distance a call has to travel in its source cell before it makes a handoff. Then, the probability 

that a mobile in its source cell will give rise to a handoff, Phi, is 

Phi= I   P{td>y/V}fY(y)dy 
Jo 

where 

[ 0 otherwise. 

Thus, 
1 _ e-ßL/v 

Phl =      liL/V     ■ 

In the following, we denote fiL/V as x. Similarly, a call in a transit cell will give rise to a handoff 

with a probability 

Ph2 = e~^v = e~x. (1) 
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Figure 1: Comparison of Pbh and PdroP for a few typical values of x 

We denote the new call blocking probability by Pbn and the handoff call dropping probability 

by Pbh- From the point of view of the mobile user, a quantity that is often more relevant than the 

handoff call dropping probability is the probability that the call gets dropped eventually due to a 

handoff failure. We denote this quantity as Pdrop. Under the above assumptions, it has been shown 

in [8] that 
PhiPbh 

*drov — 
l-Ph2(l-PbhY 

where Phl = l~e~LTyV is the probability that a call in its cell of origin makes a handoff attempt 

and Ph2 = e-ßLlv is the probability that a call in its "transit cell" makes a handoff attempt. 

In Figure 1, we plot the eventual call dropping probability (Pdrop) against the handoff call 

dropping probability (Pbh) for some typical values of x and for the most interesting range of Pbh. 

We find that Pdrop is much higher than Pbh in this range. This is due to the high number of handoffs 

that a call is likely to make due to the high relative velocity of the mobile. Therefore, we see that 

it becomes more important to handle handoffs efficiently in LEO satellite systems. The values of x 

in Figure 1 are typical of the values that are obtained in a practical LEO satellite system [8]. For 

example, x = .1917 has been obtained with l//x = 180 seconds, L = 425 km, and V = 7.39 km/s. 

We next delineate a primary cause for handoff dropping in LEO satellite networks. In Figure 2 

we illustrate a typical case where handoff dropping occurs. We assume that each cell shown in the 

figure is allocated N channels and is capable of handling no more than N simultaneous calls. Since 

the velocities of the mobiles are deterministic and identical, the reason for handoff call dropping 

is the random initial location of the mobile. Figure 2(a) illustrates such a scenario. The worst 

situation will be when there are exactly N active mobiles in the two shaded areas in Figure 2(a). 

Since all the mobiles move with the same velocity, we will have as many as N dropped handoff 

calls, if there are no natural call terminations in the meantime. 
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Figure 2: A typical case where handoff dropping occurs 

In the next section we propose a scheme to reduce handoff dropping based on the channel 

sharing scheme in [5]. This scheme, as we will see, anticipates the motion of the mobiles and 

allocates channels accordingly. 

3    Channel Sharing Handoff Scheme 

We adopt the channel allocation scheme proposed in [5], called the channel sharing scheme. We first 

describe this scheme briefly. The sharing scheme allows channels to be shared between neighboring 

cells. For illustration, we consider a linear cellular network. To facilitate the description, we need 

some terminology. A meta-cell is a pair of neighboring cells. The two adjacent cells that form a 

meta-cell are called the component cells. For example, Figure 3 shows a family of meta-cells in a 

linear cellular system, each comprising two adjacent cells. 

The channel sharing scheme allows channels to be shared between neighboring cells (namely, 

cells belonging to the same meta-cell). Consider Figure 3. For this simple linear cellular system, the 

distance measure d(X, Y) between two cells X and Y is traditionally given as d(X, Y) = \cx - cy\ 

where ex and cy denote the positions of the centers of cells X and Y, respectively. Suppose that 

the minimum reuse distance is A = rL, where L is the length of a single cell and r is an integer. 

Cells that are assigned the same set of channels are called co-channel cells. In the conventional 

scheme for fixed channel allocation, each channel is assigned to cells that are exactly a distance A 
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apart. We refer to this scheme as the tightest fixed channel assignment scheme, in which co-channel 

cells are exactly r cells apart. For example, in Figure 3, cells A and A' are co-channel cells. Let T 

denote the total number of distinct channels that are available in this linear cellular system. Thus, 

the total number of distinct channels available for each cell is T/r (i.e., the reuse factor is r). 

A meta-cell can be designated by the pair of its component cells. For example, in Figure 3, cells 

A and B are components of meta-cell (A, B). To assign channels to meta-cells, we next derive the 

distance measure d({X, Y), (X', Y')) between two meta-cells (X, Y) and (X1, Y'). Recall that in the 

sharing scheme, when a channel is assigned to a meta-cell, it can be used by a mobile user in any 

cell belonging to that meta-cell. Thus, we have to ensure that the distance between any component 

cells of two meta-cells assigned the same set of channels complies with the minimum reuse distance 

requirement. Consequently, we define d((X,Y), (X',Y')) as the minimum of the distance measures 

between the component cells of meta-cells (X,Y) and (X',Y'), i.e., 

d((X,Y),(X',Y')) = 

min{d(X,X'))d(X,y/),rf(^X,).^y')}- 

(2) 



For example, in Figure 3, the distance measure between meta-cells (A, B) and (A', B') is given by 

(r — l)L, which is the distance between cells B and A'. 

We call meta-cells that are assigned the same set of channels co-channel meta-cells. To allocate a 

maximum number of channels to each meta-cell, co-channel meta-cells must be deployed as close as 

possible. Therefore, we assign the same set of channels to meta-cells that are exactly the minimum 

reuse distance apart, i.e., rL in this case. 

It is easy to see that in the channel sharing scheme, each meta-cell is assigned T/(r + 1) distinct 

channels. In other words, the reuse factor of the channel sharing scheme is r' = r + 1. However, 

in the tightest fixed channel assignment scheme, the number of channels assigned to each meta- 

cell is T/r, so the cost we pay for allowing channels to be "shared" is T/r — T/r' = T/r(r+ 1). 

Nevertheless, by increasing the reuse distance in this fashion we facilitate a simple way for channels 

to be shared between cells with little increase in complexity over fixed channel allocation techniques. 

Our handoff handling scheme assumes that the channel sharing scheme is chosen as the method 

of channel allocation. We now describe how our handoff scheme works assuming the channel sharing 

scheme has been implemented. Without loss of generality, we assume that the relative motion of 

mobiles is such that they move towards higher numbered cells. Thus, all mobiles in cell 1 move 

towards cell 2, those in cell 2 move towards cell 3 and so on. Whenever there is a new call in cell i, 

it is allocated a channel only if there are idle channels belonging to meta-cell (i,i+ 1). Otherwise, 

the new call is blocked. This procedure is shown schematically in Figure 5. By doing the allocation 

in this way we can allow the mobiles to "carry" their channel to cell (i + 1) during handoff. Handoff 

calls arriving at cell i are allocated a channel belonging to meta-cell (i, i+ 1) if there is an idle one 

available. Otherwise, if the call was using a channel belonging to meta-cell (i — 1, i), it is allowed 

to carry the same channel over to cell i and is queued in a FIFO queue for channels belonging 

to meta-cell (i,i+ 1). But, at the time of handoff, if the call was using a channel belonging to 

meta-cell (i — 2, i — 1), then the call is dropped. The flowchart for processing a handoff call arrival 

is given in Figure 6. Each time a channel belonging to meta-cell (i, i+ 1) becomes free (either due 

to a handoff or due to a call termination) the channel is allocated to the first call in the queue 

waiting for channels belonging to meta-cell (i, i+1). If the queue is empty, the channel is idle for 

future new call or handoff call arrivals. Figure 7 is a schematic representation of the procedure for 

handling a freed channel. We see that our channel sharing handoff scheme allocates channels to 

mobiles knowing its direction of relative motion. Each mobile can travel one complete cell-length 

and look for a free channel during this time. This reduces handoff dropping significantly. 

We next note that it is possible to achieve the same handoff dropping performance with the 

conventional FCA scheme using channel reservation. The channel reservation seeks to give prefer- 

ential treatment to handoff calls by reserving channels for them. The channel reservation technique 

works as follows: Suppose there are N channels assigned to each cell. Then, new calls are admitted 

in a cell only if the total number of active calls is less than some threshold, P. Handoff calls, on the 

other hand, are admitted as long as there are idle channels. By tuning the parameter P the channel 

reservation scheme can be made to achieve the same handoff dropping performance as our handoff 

handling scheme.  But, as we will see in Section 5, our handoff scheme offers a significantly lower 
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Figure 8: Reference scenario for the two-cell approximation 

new call blocking probability for the same performance with the handoff dropping probability. 

4    Performance Analysis 

In this section, we analyze our handoff scheme using an analytical technique (the two-cell approxi- 

mation [10]). We apply the same technique to analyze the FCA scheme with channel reservation, 

could use the single-cell approximation Another approximation, called the single-cell approxima- 

tion, has been used in several studies for modeling traffic in LEO systems ([8], [9]). The single 

cell approximation assumes that the handoff call arrival into a cell is Poisson with rate Xh and 

is independent of the new call arrivals [3]. This approximation is used for analytical tractability. 

Although the single cell approximation could be used to analyze the channel reservation scheme, it 

is not suited for the analysis of our channel sharing handoff scheme. 

The single-cell approximation does not adequately capture the essence of our channel sharing 

handoff scheme. For example, the number of idle channels in a given cell, say i, not only depends 

on the number of active calls in that cell but also on the number of channels belonging to meta-cell 

(i,i+ 1) that are in use in cell (i + 1). Therefore, we use the following two-cell approximation to 

obtain the quantities of interest for our handoff scheme. 

Sidi and Starobinski [10] studied the two-cell approximation for terrestrial cellular networks. 

We use a similar model for our LEO satellite-based cellular network. The single-cell approximation 

suffers from the disadvantage that the handoff traffic into the cell is Poisson with the same rate Xh 

irrespective of the state of the cell from which handoff traffic arrives. To overcome this problem, 

the authors of [10] suggest isolating a group of cells and approximating the handoff traffic into the 

group from outside the group by a Poisson process, but make no such assumption about the handoff 

traffic originating from within the group. Then, we choose the statistics of that cell from among 

the group whose statistics will closely approximate the actual P&n and P^. We choose a group of 

two cells and carry out an approximate analysis. For the analysis to be tractable the number of 

cells within the group should not be too large. 

The reference scenario is shown in Figure 8 where i and j refer to the number of active mobiles 

in cells 1 and 2 respectively. The following are the assumptions in this section: 

1. Each cell has independent Poisson new call arrivals at the rate of A. 

11 



2. The call holding time (or the call duration), td, is exponentially distributed with mean l//i. 

3. The cell residence time (the time for which a call resides in a given cell) is exponentially 

distributed with mean I/7 = L/V, where L is the length of a cell and V is the relative 

velocity of the mobile. This approximation yields results which are in very good agreement 

with the simulation results (see [8] for a similar assumption). 

4. Handoff arrival from outside the group into cell 1 is Poisson with rate Xh. We compute A^ 

as follows: The average rate at which new calls are carried in each cell is A(l - F6n). The 

probability that a new call will attempt a first handoff is Phl = ^— where x = fj,L/V. 

Thus the average rate at which calls that are making their first handoff arrive in each cell is 

A(l _ Pbn)Phl. The average rate at which calls which are making their second handoff arrive 

in each cell is A(l - Pbn)Phi(l - Pbh)Ph2- Thus, 

00 

A(i-n„)i\iBi-W2 
i=0 

A(l - Pbn)Phi (3) 
\-{l-Pbh)Ph2 

The above model can be described as a two-dimensional continuous-time Markov chain be- 

cause new call arrivals in either cell and handoff call arrivals to cell 1 are mutually independent 

Poisson processes. Additionally, the duration of a call and the cell residence time are distributed 

exponentially and all of the above mentioned parameters are independent. 
FCA with N - P guard channels: We denote states of the two-dimensional Markov Chain 

by (i, j) where i refers to the number of active mobiles in cell 1 and j refers to the number of active 

mobiles in cell 2. Each cell is assigned N channels with N-P channels reserved for handoff calls. 

Let P(i,j),0 <i,j<Nbe the stationary probabilities of the chain being in state (i,j). New call 

arrivals are admitted only so long as there are fewer than P active mobiles in the cell while handoff 

calls are accepted as long as there are idle channels. 
The state transition diagram is shown in Figure 9. To write the balance equations, we need to 

define the following functions: 

«W = (°     ifi = ° (4) 
1     otherwise. 

0(0 = i * * < yv
r (5) 

r,® = 
1     if t < P 

0    otherwise. 

We can now write the detailed balance equations as follows: 

P(i, j){Ar/W + AT/W + \hßM + (i + j)n + (t + j)j} 

12 
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Figure 9: CTMC for two-cell approximation for fixed channel allocation with N — P guard channels 
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P{i,j - l)A<jfcVi_1) + pihJ + !)0' + 1)(7 + »)ßU) + 
P(i-l,j){XhS{l) + XS^h^}+ (6) 

P(i + 1,i){(*+ 1)^W + (*' + I)T/?
(8)

(I - /3(J))} + 

P(i+ 1, j - l)(i+ lh^Wor all 0<i,j<N. 

On the left hand side we have the rate of leaving state (i,j) and on the right hand side is the 

rate with which we reach state (i,j). Additionally, the stationary probabilities have to satisfy the 

normalization condition in the following equation: 

N    N 

EE^J) 
=
 

1
- (7) 

i=0 »=0 

For the FCA scheme with N - P guard channels, the new call blocking probability can be derived 

by invoking the PASTA property as 

P»n=EJ:P(i,J) (8) 
j=Pi=0 

and the handoff call dropping can be obtained from 

P EJIo iP(i, N) (9) 
bh~Elo^oiP(i,jY 

Eq. (8) is the new call blocking probability experienced by calls originating in cell 2. We note that 

this is a good approximation of the actual new call dropping probability. Eq. (9) is derived by 

taking the ratio of the number of unsuccessful handoffs to the total number of handoff attempts. A 

recursive method has to be employed to evaluate Pbn and Pbh using Eqs. (3), (6), (7), (8) and (9). 

Channel sharing handoff scheme: In the channel sharing handoff scheme each meta-cell is 

allocated k = ^ channels where N is the number of channels allocated to each cell in the FCA 

scheme. New calls are accepted in cell 1 only if there are unused channels belonging to meta-cell 

(1,2). The states are denoted by (i,j) where i denotes the number of active mobiles in cell 1 and j 

denotes the number of active mobiles in cell 2. Apart from the obvious restriction that 0 < i,j < 2k, 

we also have the additional constraint that 0 < i + j < 3k. Hence, the set of all feasible states, 

S(k), can be defined as follows: 

S(k) = {(i,j) : 0 < i,j < 2k;0 < i + j < 3k}. 

Let P{i,j), (i,j) € S(k) be the stationary probabilities of the system being in state (i,j). The 

state transition diagram of the two-cell approximation for the channel sharing handoff scheme is 

given in Figure 10. We define the following functions to write the balance equations (the definition 

of 5^ is the same as given in Eq. (4)): 

/JW = 
1     if i < 2k 

0     otherwise. 

14 



•   • 

•   • 

Figure 10: CTMC for two-cell approximation for channel sharing scheme 
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r,U = 

ß(hJ) 

1 if i < k 

0 otherwise. 

1 if i + j < 2k 

0 otherwise. 

With these definitions the detailed balance equations are: 

P(i,j)\(V{J) + V{i)0{i'J)) + 

P(i,j)\hß{i)ö{i'j-k) + (* +j)(A* + 7) = 

P(i,j-l)\Tfl>-1W>+ (io) 

p(i + i,j-i)(i + ihs{j)ß{i) + 

P(i - l,j){\h8® + Xti^sW-1'»} + 

P(i + l,j){(i+l)(ßß{i)0{i'3-k) +l(l~ ß{j))v(i))} 

P(i,j+l)(j+l)(l^ + l)ß{j)0^-k) 

for all (iJ)eS{k) 

On the left hand side of the above equation is the rate of leaving state (i,j) and on the right 

hand side we have the rate of reaching state (i,j). We note that whenever cell 1 has more than k 

active mobiles it is unlikely that handoff calls from cell 1 to cell 2 can be dropped. This is because 

we have at least one channel from meta-cell (1, 2) in use in cell 1. And it will be this channel which 

will be used for a handoff from cell 1 to cell 2 due to our strategy of queuing calls which need 

a channel from meta-cell (1,2) in a FIFO manner along with the near deterministic velocities of 

the mobiles. Additionally, the stationary probabilities have to satisfy the following normalization 

condition: 

E   J°(»'.i) = i- 
(i,j)es(k) 

The new call and handoff call dropping probabilities are given as follows: 

2k 

An = £ E PÜJ) (H) 
i=ojeSi(k), j>k 

E(ij)es(Jb)*p(*.J) 

where 5,-(fc) = {j:(t,j)eS(fc)}. 
Eq. (11) is the new call blocking probability experienced by calls originating in cell 2. We note 

that this is a good approximation of the actual new call dropping probability. Eq. (12) is derived 

by taking the ratio of the number of unsuccessful handoffs to the total number of handoff attempts 

arriving in cell 2. A recursive procedure has to be followed to compute P^ and Pbn- 
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5    Numerical Results 

In this section, we provide numerical results to compare our handoff scheme and the conventional 

FCA scheme with channel reservation. We use both simulation and the analytical technique pre- 

sented in the last section to perform the comparison. 

The following is the reference scenario for the simulation: 

1. We have a linear array of 30 cells, with the end cells being connected. 

2. The new call arrival, A, is the same in all the cells. 

3. Each cell is allocated 12 channels in the fixed channel allocation scheme; that is, N = 12. 

4. The length of each cell, L, is assumed to be 425 km. 

5. The relative velocity of mobiles, V, is 26,600 km/h. 

6. The mean call holding time, l//x, is 3 minutes. 

We observe that there is no loss of generality in assuming a linear array of cells for the LEO 

satellite system. This is because handoffs take place in only one direction if we ignore the overlap- 

ping region where a mobile could potentially handoff to a cell diagonally across. For the analytical 

results the same values of L,fi, and V are used. In all the results presented here, we use the nor- 

malized call arrival rate as a paramenter. The normalized call arrival rate is obtained by dividing 

the actual call arrival rate by Nji. 

The handoff dropping probability for our handoff scheme is too low to obtain reliable estimates 

using simulation. Therefore, we use the two-cell approximation to obtain estimates of the handoff 

dropping probabilities. In Figure 11, we plot the handoff call dropping probabilities of our handoff 

scheme for reuse factors 2 and 3. These values have been obtained from the two-cell approximation. 

In order to do a fair comparison between the reservation scheme and our channel sharing hand- 

off scheme, we choose the parameter P in the channel reservation scheme such that the handoff 

dropping probability of the channel reservation scheme closely approximates the handoff drop- 

ping probability obtained from our handoff scheme. We choose the parameter P of the channel 

reservation scheme as follows: 

P; = min{P : P^S(N - P) > Pg£(r) for X/Nf, = .5625} 

where P£fis(N — P) is the handoff dropping probability of the reservation scheme with N — P guard 

channels and P^(r) is the handoff dropping probability of the channel sharing handoff scheme for 

a reuse factor of r. 

The choice of A in the above equation was arbitrary. In Figure 12 we compare the new call 

blocking probabilities of the FCA scheme with N - P% guard channels and our handoff scheme 

(for reuse factor = 2). Similarly, in Figure 13 we compare our handoff scheme (r = 3) with the 

channel reservation scheme with N — P£ guard channels. We see that we obtain several orders of 

17 



10" 

-§10 

C 
'Q. 
Q. 

|io"6 

"cö 
o 

3= o 
"O c 
no 

10" 

/                               / 
/ 

-f-                   ,                      1                      , 

/ 
      Channel sharing, r = 2 
       Channel sharing, r = 3 

0.3 0.4 0.5 0.6 0.7 0.8 
Normalized call arrival rate (A/N^i) 

0.9 

Figure 11: Comparison of two-cell approximations of handoff dropping probabilities for our channel 

sharing handoff scheme for reuse factors 2 and 3 

magnitude improvement. Intuitively, such an improvement can be explained as follows: To obtain 

the same performance with the channel reservation scheme we should reserve as many channels as 

the number allowed to be carried in the channel sharing handoff scheme. While these channels are 

idle most of the time in the channel reservation scheme, in the channel sharing handoff scheme the 

channels can be used in adjacent cells to reduce the new call blocking probability. Figures 12 and 13 

also show that the analytical results from the two-cell approximation are in very good agreement 

with the simulation results. 

6    Conclusions 

We presented a handoff handling scheme based on the channel sharing scheme in [5] for LEO 

satellite-based cellular networks. We obtained significant reduction in handoff dropping probability. 

To obtain a similar reduction in handoff dropping probability in the conventional FCA scheme would 

require a significant compromise in the new call blocking probability. We compared the new call 

blocking probabilities of our channel sharing handoff scheme to that of the reservation scheme under 

similar performance with handoff dropping probabilities. Our handoff scheme performs significantly 

better. We also developed an analytical approximation which is in very good agreement with the 

simulation results. 
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Abstract 

In this paper, we study an approach for sharing channels to 
improve network utilization in packet-switched cellular net- 
works. Our scheme exploits unused resources in neighboring 
cells without the need for global coordination. We formulate 
a minimax approach to optimizing the allocation of chan- 
nels in this sharing scheme. We develop a distributed algo- 
rithm to achieve this objective and study its convergence. We 
illustrate, via simulation results, that the distributed chan- 
nel sharing scheme performs better than the fixed channel 
scheme over a wide variety of traffic conditions. 

1    Introduction 

The last several years has seen a tremendous growth in wire- 
less networks all around the world. However, compared to 
its wired counterpart, network capacity is still very much a 
scarce resource in wireless systems. Hence, improving the 
network utilization is a very important problem in such sys- 
tems. We will address this problem in the context of packet- 
switched networks. The reason we consider packet-switched 
cellular networks is that they have the advantage of statis- 
tical multiplexing and hence can deliver a higher through- 
put. There has been a large-scale effort to develop multiple- 
access schemes for packet-switched cellular networks. Stud- 
ies have shown significant improvements in throughput for 
the packet-switched networks over those obtained for the cir- 
cuit switched case. For example, Goodman et al. have shown 
in [1] that up to 1.64 simultaneous voice conversations can 
be supported in one channel. 

The framework that we assume throughout this paper is 
that of a packet-switched cellular mobile system in which 
each cell contains a base station that communicates with 
mobile or stationary users in that cell. This communication 
is done over a given set of "channels." A channel can be 
thought of as a generic network resource such that chan- 
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grant 670-1285-2569, by the National Science Foundation through 
grants NCR-9624525, CDA-9422250, CDA 96-17388, ECS-9410313, 
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nels used in one cell cannot be used in other cells that are 
closer than the minimum reuse distance. For example, in 
practical TDMA/FDMA systems, two cells that are closer 
than the minimum reuse distance are not allowed to use the 
same carrier frequency. A significant body of research has 
been conducted on dynamically allocating channels to indi- 
vidual cells under this minimum reuse distance constraint 
(e.g., see [2] and [6], and the references therein) for circuit- 
switched networks. To simplify the complexities involved 
in dynamic channel allocation, some authors have proposed 
"channel borrowing" schemes to improve network utiliza- 
tion over fixed channel allocation ([4], [7]). However, these 
schemes require either channel-locking, which necessitates 
global coordination, or dynamic power control. To avoid 
these problems, in [8] and [9], the authors provide a localized 
"channel sharing" scheme that achieves significant through- 
put improvements over fixed channel allocation, without in- 
curring significant overhead. The basic idea of the channel 
sharing scheme is that it attempts to alleviate call blocking 
by sharing channels between neighboring cells, while local- 
izing the channel coordination. 

In this paper, our objective is to extend the channel shar- 
ing scheme to packet-switched networks without the need 
for a central controller. We begin by defining channel shar- 
ing in the context of packet-switching. We then develop a 
distributed sharing scheme that optimizes a minmax objec- 
tive function, in order to better utilize the network capacity. 
We next study the convergence of the algorithm. We then 
illustrate, via numerical examples, that the packet-switched 
sharing scheme significantly outperforms the fixed channel 
allocation schemes over a variety of traffic conditions. 

2    The Sharing Scheme for Packet- 
Switched Cellular Networks 

In this section, we provide an efficient but simple dynamic 
channel allocation scheme for packet-switched cellular net- 
works based on the "sharing scheme" proposed in [8] and [9]. 
The sharing scheme attempts to alleviate call blocking by 
sharing channels between neighboring cells. For illustration, 
we consider a linear cellular network. Each cell has a base- 
station that communicates with mobile users in that cell 
using fixed-size packets.   To facilitate the description, we 
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Figure 1: Linear Cellular system 

provide some terminology. For the sharing scheme, a meta- 
cell is defined to be a pair of neighboring cells. The two 
adjacent cells that together form a meta-cell are called the 
component cells. We allocate channels to meta-cells and al- 
low these channels to be shared in any of the component 
cells ofthat meta-cell. Figure 1 shows a family of meta-cells 
in a linear cellular system, each comprising a pair of two 
adjacent cells. For example, in Figure 1, cells A and B are 
components of meta-cell {A,B). Note that the meta-cell is 
a logical notion that we use to help describe our distributed 
sharing algorithm. This notion has nothing to do with hier- 
archical cellular schemes in the literature. 
' Our channel allocation scheme for packet-switched cellular 
networks involves two main steps: (a) Fixed allocation of 
channels to meta-cells; (b) Dynamic allocation of channels 
to individual cells from those allocated to meta-cells. 

2.1    Allocation of Channels to Meta-cells 

The fixed allocation of channels to meta-cells was proposed 
in [8] and [9]. The number of channels allocated to a meta- 
cell is fixed and does not change with time. The channel 
sharing scheme allows channels to be shared between neigh- 
boring cells (namely, cells belonging to the same meta-cell). 
Consider Figure 1. For this simple linear cellular system, 
the distance measure d{X, Y) between two cells X and Y is 
traditionally given as d(X,Y) = \cx - cY\, where cx and 
cy denote the positions of the centers of cells X and Y, 
respectively. The minimum reuse distance A is defined to 
be A = rL, where L is the width of a single cell and r is 
an integer. Cells that are assigned the same set of chan- 
nels are called co-channel cells. In the conventional scheme 
for fixed channel allocation, each channel is assigned to cells 
that are exactly a distance A apart. We refer to this scheme 
as the tightest fixed channel assignment scheme, in which 
co-channel cells are exactly r cells apart. For example, in 
Figure 1, cells A and A' are co-channel cells. Let T denote 
the total number of distinct channels that are available in 
this linear cellular system (over a certain period of time). 
Thus, the total number of distinct channels available for 
each cell is T/r (i.e., the reuse factor is r). 

In the sharing scheme, we attempt to alleviate call block- 
ing by sharing channels between neighboring cells, while lo- 
calizing the channel coordination using the meta-cell idea. 
As stated above, a meta-cell can be designated by the pair 
of its component cells. For example, in Figure 1, cells A and 
B are components of meta-cell (A, B). 

i Channel Set II 

i For meta-cell    i 
!      (B, C) ! 

For meta-cell 
(C',D') 

Figure 2: The same set of channels can be used in meta-cells 
(A, B) and {B',C) and in meta-cells {B,C) and (C',D') 

To assign channels to meta-cells, we next define the dis- 
tance measure d((X,Y),(X',Y')) between two meta-cells 
(X,Y) and (X',Y'). Recall that in the sharing scheme, 
when a channel is assigned to a meta-cell, it can be used 
by a mobile user in any cell belonging to that meta-cell. 
Thus, we have to ensure that the distance measure between 
any component cells of two meta-cells assigned the same set 
of channels complies with the minimum reuse distance re- 
quirement. Consequently, we define d((X,Y),(X',Y')) as 
the minimum of the distance measures between the compo- 
nent cells of meta-cells (X, Y), (X',Y'), i.e., 

d((X,Y),(X',Y')) = 

min{d{X, X'),d(X, Y'),d(Y, X'),d(Y, Y')}. 
(1) 

For example, in Figure 1, the distance d((A, B), (A1, B')) 
between meta-cells (A, B) and (A1, B') is (r - 1)L, which is 
equal to the distance between cells B and A'. 

We call meta-cells that are assigned the same set of chan- 
nels co-channel meta-cells. To allocate a maximum number 
of channels to each meta-cell, co-channel meta-cells must 
be deployed as close as possible. Therefore, we assign the 
same set of channels to meta-cells that are exactly the min- 
imum reuse distance apart, i.e., rL in this case. For exam- 
ple, in Figure 2, meta-cells (A, B) and {B',C) are assigned 
the same set of channels (i.e., they are co-channel meta- 
cells). Consider a particular channel in this set. Now, when 
the channel is used simultaneously in meta-cells (A, B) and 
(B', C), the shortest possible reuse distance is between cells 
B and B', which is exactly the minimum reuse distance rL. 
Thus, the same channel can be independently used in cell A 
or B and cell B' or C". 

It is easy to see that in this channel assignment scheme, 
each meta-cell is assigned T/(r + 1) distinct channels. In 
other words, the reuse factor of our channel assignment 
scheme is r' = r + 1. However, in the tightest fixed channel 
assignment scheme, the number of channels assigned to each 
meta-cell is T/r, so the cost we pay for allowing channels to 
be "shared" is T/r - T/r' = T/r(r + 1). Nevertheless, by 
increasing the reuse distance in this fashion we facilitate a 
simple way for channels to be shared due to which we may be 
able to use as many as 2T/r' channels in the same cell. The 
increase in complexity is minimal because we do not require 
a central controller to allocate channels to individual calls. 
Moreover, unlike other channel borrowing schemes, in the 
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sharing scheme we do not need to use channel locking [10] 
or power control techniques [7]. 

2.2    Dynamic   Allocation   of   Channels   to 
Component Cells 

We now discuss the dynamic allocation of channels to com- 
ponent cells from among those allocated to meta-cells. We 
focus on the uplink case (transmission from mobile to base- 
station). The allocation of channels to cells cannot take 
place each time a packet that has to be transmitted to 
the base-station arrives because the relatively short packet 
transmission times will require adjacent base-stations to be 
in constant contact to find out unused channels. This will 
result in an enormous overhead. Therefore, we propose the 
following scheme for sharing. At the end of every U time 
units, we allocate channels to individual cells from those al- 
located to meta-cells. Once the allocation is done, for the 
next U time units, mobiles can only use these channels for 
the transmission of packets to the base-station. So, this al- 
location has to be done in a way that will efficiently handle 
traffic disparities among cells. 

The ability of the sharing scheme to handle the varying 
nature of traffic depends on the choice of U. There is clearly 
a trade-off in choosing U. The shorter the update duration, 
U, the more efficient the sharing and the more responsive the 
scheme to traffic variations. On the other hand, the shorter 
the update duration the greater the overhead and complexity 
of the coordination protocol between base-stations. 

We assume that there are a total of M cells. We also 
assume that each meta-cell is allocated N channels for every 
U time units using the procedure described in the previous 
section. We assume that the two edge cells are both assigned 
N/2 channels for every U time units (as shown in Figure 3). 
Note that, for convenience, we have assumed that TV is even. 

Let us consider the time duration [(n — 1)U, nU]. Let 
A,(n) be the packet arrival rate in the i-th cell for the du- 
ration [(n — 1)U, nU]. Let Xi(n) be the number of channels 
allocated from meta-cell (i,i + 1) to cell i for the duration 
[(n —1)17, nU]. We note here that cell i, besides getting x,(n) 
channels from meta-cell (i, i+1), also gets N — X{-i(n) chan- 
nels from meta-cell (i — l,i). The load pi of cell i is given 
by: 

Ai(n) 

Pi(n) = 

pi(n) = 

\i(n) 

N -Xi-i(n) +Xi(n) 

N/2 + x1(n) 

for i = 2,3,...,(M-1)  (2) 

PM\n) 
\M(n) 

N -xM-i(n) + N/2 

We choose the following as our objective: 

subject to 

min max Pi(n) 
[xi(n),..., Xf.t-i{n)]l<i<M 

0 < Xi(n) < N 

(3) 

and Xi(n) integer for i G {1, 2,..., (M — 1)} and for all n. 
The function />(•) is a measure of the traffic load in each 

cell. A higher value of/? implies a longer waiting time and a 
higher packet dropping probability. Given fixed arrival rates 
at each cell, our objective is to find values of the allocations 
xi(n),.. .,XM-i{n) to minimize the worst case value of p 
over all the cells. This strategy has the effect of allocating 
more channels to those cells that have higher arrival rates. 

We can take several different approaches to solving the 
problem. First, we can solve the above minimax problem 
as an integer programming problem and allocate channels 
based on the solution obtained. Alternatively, we can re- 
lax the requirement that Xi(n) be an integer, compute the 
solution and then interpret the result probabilistically (as 
discussed in Section 5). We choose to'take the latter ap- 
proach because of the computational complexity involved in 
solving the integer programming problem. Moreover, this 
approach provides insights that lead to the ideas described 
in the distributed sharing scheme. Therefore, from now on, 
we will drop the integer constraints on the Xi (n) 's in problem 
(3). 

We have the following theorem on the solution to our op- 
timization problem without the integer constraints. 

Theorem 1 // the system of equations 

Pi - P2 PM 

results in a solution x*  = [x\, x^, ■ ■ ■, x*M_x] 
the constraints 

0<x*i <N, i= 1,2,...,(M-1) 

(4) 

that satisfies 

(5) 

then, x* is the unique optimal solution to the optimization 
problem given in eq. (3). 

Proof: We use the following theorem from [11] to prove 
our result. 

Theorem A Let /,(x),i = 1,2,.. .,M, be continuously 
differentiate functions on an open set Q'. Let $(x) = 
maxi<i<M/i(x) and R(x) = {i £ {1,2,...,M} : /,(x) = 
<3>(x)}. Let Q, be a convex closed subset ofQ,'. Then a neces- 
sary condition for a point x* £ Cl to be a minimum point of 
$(x) on Q is that 

. ,'dfijx*) 
mi    max   ( —^—L,z —x 
z€fHe.R(x') <9x 

0 (6) 

where (a, b) denotes the inner product of a. and h.  7/$(x) 
is convex, this condition is also sufficient. 



Details of the proof can be found in [12]. D 

This solution to the minimax optimization problem is 
intuitive. We see that any further attempt to reduce 
max {pi, p2, ■ ■ ■, PM } from the optimal solution of pi = p2 - 
■ • - = pM would have to increase the number of channels al- 
located to each cell. Since we have already made use of all 
the channels, such a reduction is impossible. 

For some results in this paper we assume that the solution 
to eq. (4) satisfies the constraints in eq. (5). This is a rea- 
sonable assumption because a very high degree of permanent 
non-uniformity in traffic is required to obtain a set of A; 's 
that violate this assumption. Such permanent overloaded 
cells can be handled by allocating more fixed channels to 
the meta-cell. For transient overloaded cells, our assump- 
tion is very reasonable and will almost always be satisfied. 
Further, in [12] we describe a method to obtain the optimal 
solution for the case when this assumption is relaxed. 

The above solution to the minimax problem tells us that 
the optimal solution is obtained by making the load (p) in 
all the cells equal. This observation leads naturally to an 
algorithm similar to load balancing. In the following, we de- 
velop distributed strategies to dynamically allocate channels 
to component cells from those allocated to meta-cells based 
on the above minimax solution. 

3    Distributed Sharing Scheme 

Note that to implement the solution to our optimization 
problem directly, we need to know the packet arrival rates 
in all the M cells. This implies that there should be a central 
controller to allocate channels. Therefore, to do away with 
the requirement for a central controller, we develop a dis- 
tributed algorithm to allocate channels. In our distributed 
scheme, the components of each meta-cell interact among 
themselves and decide the number of channels each cell is 
going to take. The number of channels each cell takes at 
each update time is such that the resulting load (p's) of the 
two component cells within a meta-cell will be equal. The 
order and manner of interaction between cells is described in 
Section 3.2. The cells keep interacting and re-evaluating the 
2!,-'s until the termination condition is reached. Henceforth, 
we will only consider the time interval [(n - 1)U, nil] and 
for simplicity we will not explicitly display the dependence 
of A, x, and p on n. 

We describe the distributed sharing scheme in the follow- 
ing sections. 

3.1     Allocation Update Operation 
Let us consider the case when cells i and i+1 are interacting 
to decide the number of channels each of them should take 
from among those belonging to meta-cell (i, i +1). Let cell i 
have a channels from meta-cell (i- 1, i) and cell (i+ 1) have 
ß channels from meta-cell (i + l,i + 2) from the previous 
iteration. Then, we update a:,- as follows: 

Xi(ß + N) - Xi+ia 

The above choice of a;,- would make />,- = pi+i- 
Note that the update equation (7) does not guarantee fea- 

sibility, i.e., that X{ satisfies 0 < a;,- < N. To ensure feasibil- 
ity, we suggest the following modification: 

if \i(ß + N) <Xi+1a 
if Xiß> \i+1(N + a) 

otherwise. 
(8) 

Essentially, the above modification just takes the projection 
of the solution obtained from eq. (7) on the interval [0, N]. 

3.2    Interaction Mechanism 
In this section we describe how the sharing operation can 
proceed by providing three different interaction mechanisms. 

3.2.1     Mechanism   1:     Serial   Synchronous  Mecha- 
nism 

At the end of each U time units, do the following: 

1. Set i := 0, initial condition x(°) = [x[ ' ,x2 ',.. .,I^_J]. 

2. If termination condition has not been reached (see Sec- 
tion 3.3), do the following: 

.(0 ,(•') (i+i)    (i+i) (i+i) 
*■) 1 ' ' • i * A 

Xi = 
Ai + A1+i 

(7) 

3. Update x\',x2',.. .,x)J_1 to x\      ,*2      ,---,+M-I 

successively using eq. (8). 

4. Set i := i + 1 and go to step 2. 

A good choice for the initial condition x(0) is the final 
allocation for the previous U time units. In words, the algo- 
rithm works as follows: We first let cells 1 and 2 interact to 
decide xi, then let cells 2 and 3 decide x2 and so on. Once 
xjvf-i has been decided, we revert back to cells 1 and 2 and 
the variable xi. We continue the above process until the ter- 
mination condition is satisfied. The final allocation is based 
on the values of a;,-'s at the time when sharing is terminated. 

3.2.2     Mechanism 2:   Parallel Synchronous Mecha- 
nism 

We now describe an alternative synchronous interaction 
mechanism. This interaction mechanism does sharing op- 
erations in parallel and hence will converge faster. The al- 
gorithm is described as follows: 

At the end of each U time units, do the following: 

1. Seti :=0, initial condition x<°) = [x^, x[°\ ..., a$_i]- 

2. If termination condition has not been reached (see Sec- 
tion 3.3), do the following: 

3. Update 4°, 4°,... to a:<*'+1>1*<'+1)
)... simultane- 

ously using eq. (8). Then update x\%\x\',... to 

x2'+1\x^+1\ ... simultaneously using eq. (8). 

4. Set i := i + 1 and go to step 2. 



This interaction mechanism works as follows: Meta-cells 
(1,2), (3,4), (5,6) etc. together carry out an update op- 
eration. Then meta-cells (2,3), (4,5), (6,7) etc. together 
carry out an update operation using the updated values from 
the last operation. Then we revert back to meta-cells (1,2), 
(3,4), (5,6) etc. with the updated values. 

3.2.3    Mechanism 3: Asynchronous Mechanism 

In the asynchronous mechanism we do not require meta-cells 
to coordinate their update operations with other meta-cells. 
Instead, each meta-cell can perform update operations at 
arbitrary times and in an asynchronous fashion (see Sec- 
tion 5 for a discussion of possible rules for update initiation). 
Hence, we do not require a global clock to carry out this op- 
eration. Whenever an update is initiated in a meta-cell, say 
(i, i+ 1), we update #,- according to eq. (8). 

In Section 4 we provide convergence results for the dis- 
tributed algorithm. The parallel synchronous mechanism 
will converge faster to the optimal solution since the shar- 
ing operations are carried out in parallel. The asynchronous 
mechanism simplifies implementation by eliminating the co- 
ordination and global clock required with the other two syn- 
chronous mechanisms. 

3.3    Termination condition 

The termination condition determines when to stop the shar- 
ing iteration. The distributed sharing scheme converges to 
the optimal solution and has the descent property, i.e., the 
maximum cell load (pi) at the end of each iteration is at most 
as large as the maximum cell load at the end of the previ- 
ous iteration. (We state these results in the next section). 
Therefore, the iterations can be terminated based on any of 
the following criteria: (a) Terminate after a fixed number 
of steps; (b) Terminate after the difference between succes- 
sive iterates falls below a certain threshold, i.e., terminate 
once ||x^+1) — xC^lloo < ea; (c) Terminate after the relative 
difference between successive iterates faljs below a certain 
threshold, i.e., terminate once O-xWil 

II*« IU <Cr- 

4    Analysis of the Distributed Algo- 
rithm 

In this section we show that the distributed algorithm has 
the descent property. We also show that if the optimal so- 
lution to the minimax problem results in /Ci(x*) = P2(x*) = 
■ • • = PM(X*), then the distributed algorithm converges to 
the optimal solution. To save space, we do not provide de- 
tailed proofs for our results. Complete details can be found 
in [12]. 

We first claim that for a fixed a and ß, X{ given by eq. (8) 
results in the minimax solution for the two cells under con- 
sideration, namely cells i and (i + 1). 

Lemma 1 The value of x* given by eq. (8) is the optimal 
solution to the following problem: 

min max{/9,- ,pt+i} (9) 

subject to 0 < x'j < N where pi = \i/(a + a:,-) and p1+1 = 
Xi+1/{N-Xi + ß). 

Proof:    See [12]. D 

We now claim that the distributed algorithm has the de- 
scent property. This claim is easily proven using Lemma 1. 

Theorem 2 The distributed algorithm has the folloiuing de- 
scent property: 7/{x(fc)} is the sequence of iterates obtained 

from the distributed algorithm and if {p\ , i = 1,2,..., M} 
are the corresponding function values, then 

(As + l)    , (k) max p)      ' <   max p) '. 
Ki<M    l — Ki<M 

Proof:    See [12]. 

(10) 

D 

If the optimal solution x* satisfies 0 < x* < N, then 
x* is the only point that will remain unchanged under the 
distributed algorithm iterations. We state this result as the 
following proposition. 

Proposition 1 If the point x* = [x\,x*2,..., x*M_^\, is such 
that p* = ■ ■ • = p*M and 

0<x*{ <N, i= 1,2,...,(M-1), (11) 

then x*  is the only fixed point of the distributed algorithm 
iteration. 

Proof:    See [12]. D 

The following theorem states that the distributed algo- 
rithm iterates converge to the optimal solution. 

Theorem 3 Let {x(fe)} be the sequence of iterates obtained 
from the distributed algorithm as described above and let the 
optimal solution x* satisfy the assumption in eq. (4), then 
x(fc)-)-x*. 

Proof:    See [12]. D 

The distributed algorithm, as described above, has an ap- 
pealing geometric interpretation. We note that when the 
optimal minimax solution satisfies eq. (4), it is just the so- 
lution to the following system of equations: 

-(Ai+A2)ari+Aia;2    =    A27V/2-Ai7V 

AßZi - (A2 + A3)a!2 + A2Z3    =    A3/V - X2N 

XM^M-I — (AM-I + AM)#M-I 

=    XMN-ZNXM-X/2. 

(12) 

The serial mechanism of our distributed algorithm works as 
follows: Given an initial x(°), fixing x2   , we find an x[ ' that 
satisfies the first of the above equations.   Then, fixing x\ 

and £3   , we find an x2    that satisfies the second equation 

above and so on. In general, fixing x\_^ ' and a;,-^, we find 

x\ ' by solving the i-th equation above. In Figure 4, we 
illustrate how this scheme converges to the optimal solution 
for the 3-cell case. 
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Figure 4: Convergence of the distributed algorithm 

5    Discussion 

In this section we discuss some issues related to our scheme. 
We note that usually we will not know the exact value of 

the packet arrival rate A,(n), beforehand. Therefore, we may 
need to estimate A,(n). One possibility is to use the packet 
arrival rate over the last L time units. There is a trade- 
off in choosing L. If we choose L large, then our sharing 
algorithm will not react substantially to a change in packet 
arrival rate that has just begun. On the other hand, if we 
choose L small, then the sharing algorithm would react to 
even a small change in packet arrival rate that may not last 
very long. In the simulation, presented in the next section, 
we choose L = U. 

The choice of termination condition is crucial for the dis- 
tributed algorithm iterations. The longer we run the itera- 
tions the more balanced the load is over all the cells. But, 
each iteration increases the overhead because we require ad- 
jacent base stations to inform each other of their respective 
updates. In our simulation results described in the next 
section, we observe that for a single overloaded cell, one 
complete iteration is usually sufficient to give satisfactory 
performance. 

Another factor that influences the number of iterations 
that need to be made is that we may have to carry out 
the iteration based on the estimated packet arrival rate and 
not the actual packet arrival rate. It might turn out that 
the actual packet arrival rate could be quite different from 
the estimated arrival rate. Thus, it may be better to carry 
out the iterations every once in a while based on an updated 
estimate rather than carry out more iterations with the same 
estimated packet arrival rate. 

In our algorithm, we have assumed that the allocation 
is updated periodically. However, alternative update rules 
are possible. For example, an update can be initiated by 
an overloaded cell or by an underloaded cell. Specifically, 
when an overloaded cell realizes that its load (p) is higher 
than a certain maximum threshold, it can initiate an update. 
Similarly, when the p value in an underloaded cell drops 

below a certain lower threshold, it can initiate an update. 
Alternatively, a cell can initiate an update when its p rises 
or drops by more than a certain percentage since the last 
update. 

We have described our schemes only for a linear cellu- 
lar network. These ideas can be extended to 2-D and 3-D 
cases. Simulation analysis for the 2-D case was carried out 
in a circuit switched setting in [8] and the gains were im- 
pressive. We expect similar gains in the packet-switched 
scenario also for the 2-D as well as 3-D cases. We are cur- 
rently investigating the sharing scheme for the 2-D case in 
the packet-switched scenario. 

We have shown the convergence of the distributed algo- 
rithm to the optimal solution only when the optimal solu- 
tion satisfies eq. (4). But, as we have noted before, our 
distributed algorithm has the descent property irrespective 
of whether the optimal solution satisfies eq. (4) or not. From 
a practical viewpoint, we can terminate the algorithm after 
just a few iterations and still expect the performance gain 
to be substantial. For example, in the simulation results 
presented in the next section, we terminate the iterations 
after exactly one complete cycle and we still obtain fairly 
impressive gains over the FCA scheme. 

The solution we have given assumes that Xj's are all real, 
while, in practice, they have to be integers. We could ar- 
bitrarily round off the x,'s or take the floor or ceiling to 
satisfy the integer requirements. Alternatively, we suggest 
the following probabilistic method of handling the integer 
constraints. The number of channels we allocate to cell i 
from meta-cell (i,i + 1) can be decided as follows: Allocate 
[xi\ channels to cell i with a probability of [a;,-] - xt and 
allocate \xi\ channels with a probability of a;,- - [x,J. If we 
interpret the result this way, it can easily be seen that the 
expected value of the number of channels allocated to cell i 
is a:,-. 

6    Numerical Results 

In this section we present simulation results. We consider 
a linear cellular system of 30 cells. We assume packet ar- 
rivals to be Poisson and packet sizes to be fixed at 576 
bits/packet. The objective is to observe the performance 
of the distributed sharing scheme in the presence of traffic 
non-uniformities. Towards this end, we fix the packet arrival 
rate in all cells, except cell 15, at 500 packets/sec. We in- 
crease the packet arrival rate in cell 15 from 500 packets/sec 
to 2900 packets/sec and observe the results. 

In the fixed channel allocation scheme, each cell is allo- 
cated a carrier that can handle 1250 packets/sec. In the 
simulations, we choose U = .48 seconds. We terminate the 
distributed sharing algorithm after exactly one iteration cy- 
cle and as the results show, we get fairly impressive gains 
over the FCA scheme. Since we need just one iteration to 
get satisfactory results, the overhead to implement the shar- 
ing scheme is minimal (as can be seen from Table 1). The 
simulations use the estimated packet arrival rates and not 
the exact packet arrival rates.  We leave the packet arrival 



U = .16 s U = .48 s U = 1.6 s 
reuse = 2 1.48% .498% .15% 
reuse = 3 1.32% .442% .133% 
reuse = 4 1.23% .415% .125% 

Table 1: Fraction of overhead traffic for updates 

rate in the congested cell as a parameter. We normalize the 
packet arrival rates using the packet arrival rate in the other 
cells, i.e., 500 packets/sec. 

In Table 1, we compare the percentage overhead due to 
information exchange when we stop the algorithm after one 
iteration cycle for various update durations and reuse fac- 
tors. Whenever a cell carries out an updating process, we 
assume that two packets will be required. For example, when 
x,- is being updated, one packet each would be required for 
cell i to first obtain information about the latest value of 
X{+i and then to inform cell i + 1 about the updated value 
of Xi, once the updating is done. We note here that these 
overhead packets can be transmitted over the wired network 
where the resources are not as scarce. 

In Figures 5(a) and 5(b), we compare the packet drop- 
ping probabilities of the sharing scheme for various reuse 
factors and the fixed channel allocation scheme. In Fig- 
ure 5(a) we have the overall packet dropping probability 
and in Figure 5(b), the comparison is between packet drop- 
ping probabilities only in the most congested cell (namely, 
cell 15). We assume an FCFS queuing discipline for trans- 
mitting packets to the base-station and that a packet that 
arrives when there are 200 or more packets in the queue gets 
dropped. We see that the sharing scheme performs consis- 
tently better than the fixed channel scheme. As expected, 
we also find that the higher the reuse factor, the better the 
performance. For example, for an overall packet dropping 
probability of 0.01 while we can support a normalized packet 
arrival rate of only 2.8 in the fixed channel scheme we can 
support a normalized packet arrival rate of up to 4.8 with 
the sharing scheme for a reuse factor of 4. Similarly, for a 
typical value of packet dropping probability in the congested 
cell of 0.1 the improvement in the packet arrival rate that 
can be supported is 29% if the reuse factor is 2 and as much 
as 61% if the reuse factor is 4. 

In Figures 6(a) and 6(b), we compare the waiting time of 
a packet before it gets transmitted to the base-station. In 
Figure 6(a) the overall average waiting time for a packet is 
compared. In Figure 6(b) we plot the average waiting time 
for a packet in the congested cell. In these figures we also 
plot the 99% confidence intervals. We obtain a substantial 
performance improvement using the sharing scheme. For 
example, for an overall average waiting time of 0.3 seconds, 
while the fixed channel scheme can support a normalized 
packet arrival rate of only 3.3, the sharing scheme can sup- 
port a (normalized) packet arrival rate of about 4.1 if the 
reuse factor is 2 and about 5.3 if the reuse factor is 4. These 
represent improvements of about 24% and 61% respectively. 
Similarly, for an average waiting time of 2 seconds in the 
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Figure 5: (a) Comparison of packet dropping probabilities 
for all the 30 cells (b) Comparison of packet dropping prob- 
abilities in the congested cell 

congested cell, the improvement we obtain for the sharing 
scheme over the fixed channel scheme is about 22% if the 
reuse factor is 2, 43% if the reuse factor is 3, and 62% if the 
reuse factor is 4. 

7    Conclusions 

In this paper, we developed a channel sharing algorithm for 
packet-switched cellular networks that performs better than 
fixed channel allocation over a wide range of traffic condi- 
tions. We formulated our objective in terms of a minimax 
problem and developed distributed algorithms that achieve 
this objective. Our distributed sharing algorithm can easily 
be implemented since a central controller is not required to 
assign channels to cells. The asynchronous version of the 
distributed algorithm is even simpler to implement because, 
besides not requiring a central controller, it does not require 
cells to coordinate their sharing operations. We showed the 
convergence of the distributed sharing algorithm to the op- 
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Figure 6: (a) Comparison of average waiting time in all the 
30 cells with 99% confidence intervals (b) Comparison of av- 
erage waiting time in the congested cell with 99% confidence 
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timal solution for commonly occurring packet arrival pat- 
terns. Simulation results showed that our distributed chan- 
nel sharing scheme performs significantly better than fixed 
channel allocation techniques over a variety of traffic condi- 
tions even with just a single complete iteration of the sharing 
algorithm. 
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Abstract—We present a novel static power control scheme to improve 
system capacity in wireless cellular networks. Our basic idea is to reduce 
intercellular interference and improve the capture probability by coor- 
dinating transmission powers of users in different cells. This coordina- 
tion is determined beforehand and no real-time coordination is required. 
Power control is static and fixed. We formulate and solve a generic opti- 
mal scheduling problem with our coordination scheme. We find that the 
optimal scheduling policy is in a simple form of bang-bang control, which 
is illustrated for a specific case with the uniform fairness constraint. We 
evaluate, via numerical analysis and simulation, both throughput and de- 
lay, and compare them with other schemes. We find that the coordina- 
tion scheme can achieve significant performance improvement, in terms 
of both maximum throughput and throughput-delay tradeoff, over a wide 
range of capture ratio values. 

I. INTRODUCTION 

In the last few years, wireless communication systems have 
experienced tremendous growth. Compared to its wired coun- 
terpart, the wireless spectrum is a much more scarce resource. 
Cellular technology is an effective means of improving spec- 
trum utilization in the wireless environment. In a cellular sys- 
tem, the service area is covered by a number of contiguous 
small zones, called cells. The same spectral resource can be 
reused simultaneously in different cells, provided that their 
mutual interference is low enough for reliable communication 
in individual cells. The unit of wireless spectrum needed to 
serve a single user is called a channel. In current cellular 
systems, especially in the circuit-switched environment, chan- 
nel reuse is separated by at least a minimum reuse distance, 
which is typically set such that the signal-to-interference ratio 
(SIR) on the same channel statistically exceeds some thresh- 
old. A significant body of research has been conducted on ef- 
ficiently allocating channels to individual cells under this min- 
imum reuse distance constraint, among which there are fixed 
and dynamic channel allocation schemes. 

Next generation wireless systems are envisioned to support 
high-speed multimedia applications with packet-switching 
technology. For example, there has been a significant research 
effort devoted to the development of wireless ATM networks. 

1This research was supported in part by AT&T special purpose grant 670- 
1285-2569, by the National Science Foundation through grants NCR-9624525, 
CDA-9422250, CDA 96-17388, ECS-9410313, ECS-9501652, and ANI- 
9805441, and by the U.S. Army Research Office through grant DAAH04-95- 
1-0246. 
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Experience in the wired network environment has shown that 
large channel capacity is needed to maintain quality of service 
for multimedia applications. The capacity problem becomes 
even more severe in the wireless environment. Thus, one of 
the crucial problems is to extract as much spectral capacity as 
possible on the wireless link, especially by taking advantage 
of the mechanisms provided by packet-switching. In packet- 
switched networks, the success of a transmission is measured 
in a packet-by-packet fashion. In particular, a packet trans- 
mission in a cell is successful if the instantaneous SIR is suf- 
ficiently high. The capability to detect a packet in the pres- 
ence of interference is known as capture. Note that in the 
wireless environment, whether capture occurs or not depends 
on many factors, including electromagnetic signal propagation 
conditions (e.g., fading and shadowing) and traffic conditions 
(e.g., locations of interfering transmitters), and thus may fluc- 
tuate rapidly with time. Therefore, it is desirable that packet 
transmissions take advantage of the time periods during which 
capture occurs. 

Based on the notion of capture, a new family of spectrum 
reuse methods have been recently proposed in [1], [3], which 
we call capture based spectrum reuse. The basic idea is to 
reuse the same channels in each cell. Thus, the capacity per 
cell is increased. However, since more interference is intro- 
duced due to closer channel reuse, capture failure is likely to 
occur. When capture fails, packets are retransmitted until cap- 
ture is successful. The rationale here is that since the propaga- 
tion delay between a user and its base-station is usually small 
(in the order of a few bits of transmission delay), recovery by 
retransmission is an effective mechanism of dealing with cap- 
ture failure. However, we note that capture failure degrades the 
effective spectrum utilization, and also impacts the delay that 
packets may experience before being successfully delivered. 

In this paper, we propose a novel power control scheme to 
alleviate the problem of capture failure. Power control is a 
technique of assigning different values of transmission power 
to different users. Unlike most power control schemes in the 
literature, in our scheme, power control is done in a coordi- 
nated fashion among users in different cells such that the inter- 
cellular interference can be effectively reduced. For simplicity 
of implementation, our intercellular coordination is determined 
a priori, and thus no real-time coordination is required. To fur- 



ther simplify implementation, the power control is static and 
the power control levels are determined beforehand. 

II. CAPTURE MODEL AND CAPTURE DIVISION PACKET 

ACCESS 

Consider a cellular mobile system in which each cell con- 
tains a base-station that communicates with mobile users in 
that cell. In this paper, we consider a time-slotted framework, 
and assume that the size of packets in the cellular network is 
fixed and that exactly one packet can be transmitted in one 
time-slot. 

Suppose that in a given time-slot of a carrier, there are two 
or more users transmitting packets. The transmissions may 
interfere with each other, and depending on the level of the 
interference, some of the transmissions may be unsuccessful. 
As discussed earlier, a successful transmission is referred to as 
capture. In a commonly used model, capture is said to occur 
(for uplink communication; for downlink communication, one 
can define capture similarly) for some user 0 if the signal-to- 
interference ratio (SIR)* exceeds some constant threshold 

Wo 
Zi?0Wi 

>b. (1) 

Here, W0 is the received power at user O's base-station, Wt are 
the received powers from other co-channel users at the same 
base-station, and b is called the capture ratio. Capture ratio is 
an important parameter that reflects the physical layer require- 
ment for reliable communication. Various technologies react 
to interference differently. Capture ratio reflects how difficult 
it is for capture to occur. For example, with the same SIR, 
capture occurs less often for a larger value of b than a smaller 
value of b. Later, we will show that the value of b significantly 
impacts the performance of different spectrum reuse schemes. 

As mentioned earlier, by taking advantage of the capture ef- 
fect, the capture based spectrum reuse schemes attempt to in- 
crease spectral capacity in packet-switched wireless systems. 
Specifically, the distance between cells that are allowed to 
transmit in the same channel is shorter than the minimum reuse 
distance. Hence, the number of channels that can be allocated 
to an individual cell is significantly increased. An important 
example of the capture based spectrum reuse schemes is the 
Capture Division Packet Access (CDPA), proposed in [1]. In 
CDPA, users in all cells can transmit in the same time-slots of 
each carrier, with some permission probability, and if capture 
does not occur, this collision is resolved by retransmitting the 
packet a random time later. By using a precise intracellular 
multiple access control mechanism, CDPA ensures that there 
is no contention between users within any given cell and that 
capture failure is only due to the interference from neighboring 
cells. In [1], it was shown via numerical studies that CDPA can 

"the effect of thermal noise is ignored. 
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Fig. 1. Illustration of the near-far effect in CDPA (a) Users further away from the base- 
station may experience substantially lower capture probability, (b) More retransmis- 
sion chances (hence higher capacity) have to be allocated for users that are further 

away from the base-station. 

outperform standard TDMA, especially when the capture ratio 
is relatively low (e.g., b — 6 dB). However, the results are not 
satisfactory when the capture ratio is high (e.g., b = 10 dB). 

We find that with CDPA, the probability that capture occurs 
(capture probability) depends strongly on the location of a mo- 
bile user, and that excessive retransmissions may result, espe- 
cially for users that are geographically located in a way that 
makes capture difficult. We call this phenomenon the near-far 
effect, and illustrate it in Figure 1. In Figure 1(a), we plot a 
typical curve of the capture probability versus the distance of 
a mobile user to its base-station. It is apparent that the SIR for 
mobile users close to the base-station ("near" users) is high, 
thus leading to high capture probability. However, users far 
way from the base-station ("far" users), with weaker signals 
but stronger interference, suffer very low capture probability. 
Therefore, to maintain some degree of fairness among users 
in different locations in the cellular network, one has to allo- 
cate more retransmission opportunities to the unfavorably lo- 
cated users, who use a significant portion of the spectrum. For 
example, in Figure 1(b), we plot the density function of the 
spectrum allocation that keeps the same throughput for mobile 
users in different locations. Clearly, users far away from the 
base-station become the bottleneck for network efficiency. In 
the following sections, we present our static coordinated power 
control scheme to address this bottleneck problem. 

III. PRIMARY/SECONDARY COORDINATION 

In our scheme, we employ a simple reservation-based tech- 
nique for multiple access control of users within a cell. In par- 
ticular, a fraction of the time-slots on the uplink channel are 
designated as reservation slots. Mobile users who start/resume 
to send payload packets first inform the base-station by trans- 
mitting request packets on those reservation slots with some 
random access mechanism (e.g., ALOHA). Clearly, commu- 
nication on the reservation slots could experience contention 
and collisions may occur. The size of the request packets is 
chosen to be much smaller than that of the payload packets, so 
that this collision probability is very small. The base-station, 
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Fig. 2.   Illustration of primary/secondary coordination 

upon receiving a request packet, schedules the transmissions 
for the intended mobile user, according to some scheduling 
discipline, by sending commands along with downlink payload 
packets, on the downlink channel. In this way, uplink payload 
transmissions can be ensured to be contention-free. Therefore, 
in our coordination scheme, the transmissions on both uplink 
and downlink channels are completely controlled by the base- 
station in a given cell. 

Recall from our previous discussion that the problem with 
CDPA is that it relies solely on random fluctuations of the SIR 
to combat capture failure and consequently results in excessive 
retransmissions for "far" users. Instead of wasting spectral re- 
sources on retransmissions, we aim to improve the probabil- 
ity of a successful transmission by a priori coordinating user 
transmissions over different cells. Since "far" users represent a 
bottleneck that requires a significant percentage of retransmis- 
sions, our basic idea is to improve the capture probability of 
these users by reducing the interference they experience. 

Consider the following intuitive heuristic. When a "far" user 
is transmitting (or receiving) packets in a given cell, the idea 
is to reduce the power of simultaneous transmissions in the ad- 
jacent cells. On the other hand, since the power levels are re- 
duced in the adjacent cells, only "near" users can be served in 
the adjacent cells, for otherwise the capture probability could 
become even worse. For the illustration of this heuristic, con- 
sider Figure 2, in which we show two adjacent cells in the cel- 
lular network. Here, we allow the base-station in the right cell 
to use one carrier (carrier A) with full power and serve a "far" 
user in the cell, while the left cell uses the same carrier, but 
with a reduced power level and serving only a "near" user. We 
do the reverse on another carrier (carrier B), to maintain fair- 
ness between the two cells. 

In summary, in our scheme, carriers that are assigned to each 
cell in the cellular network are either primary or secondary. 
Primary carriers can be used to transmit (or receive) packets 
at the full allowable power WT, while secondary carriers can 
only be used to transmit (or receive) packets at a reduced power 
level JWT, where 0 < 7 < 1. We call this coordinated power 
control scheme the primary/secondary coordination scheme. 
Note that 7 is an important tuning parameter that can be used 
to balance capture success in cells using primary and secondary 
carriers. At one end, when 7 = 1, there is no difference be- 

tween the primary and secondary carriers, and our scheme is 
indeed equivalent to CDPA. At the other end, when 7 = 0, the 
capture probability in the secondary cells is reduced to zero. In 
fact, there is no communication activity at all in the secondary 
cells, which is similar to standard TDMA with a fixed channel 
reuse distance. Later we will show that, by applying an appro- 
priate scheduling strategy, our primary/secondary coordination 
scheme can outperform both CDPA and TDMA. 

We point out two fundamental advantages that make this 
scheme practically attractive: 
(i) The assignment of primary/secondary carriers to any par- 
ticular cell is determined beforehand, and no real-time inter- 
celluar coordination is required. 
(ii) Power control is static, i.e., 7 is a constant. In particu- 
lar, here we consider two power control levels that are set a 
priori and whose values are not changed. Note that this is 
very different from other power control schemes in the liter- 
ature, where the power is allowed to be changed dynamically 
and hence more sophisticated signal processing is required for 
their implementation. 

The question to answer now is how to schedule users in 
different locations, under this primary/secondary coordination 
scheme. In our earlier heuristic discussion, illustrated via Fig- 
ure 2, we suggest serving "far" users with primary carriers and 
"near" users with secondary carriers. To more precisely an- 
swer the above question, we next formulate an appropriate op- 
timization problem and develop an optimal scheduling policy. 
Interestingly, it turns out that under certain conditions, the op- 
timal solution agrees with our intuitive guess. 

IV. OPTIMAL SCHEDULING 

A. System Description 

For simplicity of description, consider a linear cel- 
lular system, where the base-stations are numbered as 
{..., 0,1,2,...,}, and where the distance between two adja- 
cent base-stations is normalized to be 2. Mobile users commu- 
nicate with the nearest base-station. Thus, the radius of each 
cell is 1. 

In our scheme we group all the carriers into two distinct 
carrier-sets A and B. All odd-numbered cells are assigned 
carrier-set A as the primary carrier-set, and carrier-set B as 
the secondary carrier-set; the even-numbered cells are assigned 
carrier-set B as their primary carriers, and carrier-set A as their 
secondary carriers. Due to symmetry, without loss of general- 
ity, we next only focus on carrier-set A, and thus call the odd- 
numbered cells the primary cells and even-numbered cells the 
secondary cells. 

Let gp(x) and gs{x), with 0 < x < 1, be the density func- 
tions of the traffic load at a distance x away from the base- 
station when the cell is primary and secondary, respectively. 
Note that these traffic load densities include both new and re- 
transmitted packets, and can be either downlink or uplink. The 



distance parameter x is referred to as location x. We call the 
pair {gp, gs } the traffic load density pair. Here we use gp, gs 
instead of gp{-),gs(-) to simplify notation. We assume that 
the traffic load densities are piecewise continuous. The ag- 
gregate traffic loads in a primary and secondary cell are given 

by GP= 2 /Q1
 gP(x) dx and Gs= 2 f* gs(x) dx, respectively. 

We can also interpret Gp and Gs as the probabilities that a 
transmission occurs in a primary and secondary cell, respec- 
tively. 

Let Pp and Ps denote the capture probabilities in a primary 
and secondary cell, respectively. The capture probabilities de- 
pend on both the location where packet transmission occurs 
in the cell and the interference from the adjacent cells. Thus in 
general, we use the notations Pp(x, gp,gs) and Ps{x, gp, gs) 
to reflect this dependence. 

We define s(x) to be the throughput density function, per 
carrier-set^, at a location x, which is given by 

4X) = ^(gp(x)Pp(x,gp,gs) + gs(x)Ps(x,gp,gs))   (2) 

A throughput density function is called achieveable, if there 
exist a traffic load density pair that satisfies Equation (2) for all 
x. We denote <S the set of all achieveable throughput density 
functions. 

The optimal scheduling problem is formulated as 

maximize 
ses 

subject to 

M 
h(s) > 0 (3) 

Again we use s instead of s(-) to simplify notation. The traffic 
load density pair that is associated with the optimal solution 
of (3) is referred to as optimal traffic load density pair and 
is denoted by {gP, gg}. Here, / and h are general functions 
satisfying the following condition: 
(Cl) If h(s) > 0, then for all C > 0, we have f{s+C) > f{s) 
and h(s + C) > 0. 

The above optimal scheduling problem is very general and 
captures a variety of realistic problems. 

(i) f(s) = 2 /o s(x) dx, or f(s) = minx s(x). 
(ii) h(s) = minxs(a;) - maxxs(a;). This constraint im- 

plies uniform fairness, i.e., the throughput is the same for 
different locations in the cell. The uniform fairness con- 
straint is typically studied in the literature, for example in 
[1]. More generally, we can have a non-uniform fairness con- 
straint: h(s) = c - (maxT s(x) - min* s(x)), or h(s) = 

^1, where c > 0 is some constant. c — maxx s(x) 

B. Necessary Conditions for Optimality 

Before, we proceed to solve the optimization problem (3), 
we impose the following condition on the capture probabilities: 

tNote that the throughput in a cell comes from traffic on both carrier-sets A 
andß. 

(C2) At any location in the cell, the capture probabilities de- 
pend only on the aggregate value of the traffic load pair. 

Hence, we denote the capture probabilities in a primary and 
secondary cell as Pp(x, GP,GS) and Ps(x, GP, Gs), respec- 
tively (instead of Pp(x, gp,gs) and Ps(x,gP,gs)), to reflect 
this assumption. Note that condition (C2) exactly reflects the 
real situation in downlink communication. However, for up- 
link transmission, the received interference depends in general 
on the location of interferers. Thus, the capture probability in 
this case is determined by the traffic load distributions in the 
interfering cells, not just the aggregate values. Therefore this 
assumption represents an approximation for uplink communi- 
cation. However, our simulation results will show that the mis- 
match can be safely ignored. It should be noted that in [1], 
the authors made the same assumption and they too found the 
impact of the approximation to be negligible. 

Based on conditions (Cl) and (C2), our procedure for solv- 
ing the optimal scheduling problem (3) is as follows. First, for 
a given set of aggregate traffic loads Gp and Gs, we derive the 
optimal traffic load density pair {gP, gs}. We then obtain the 
overall solution by optimizing over the values of Gp and Gs 
(recall that GP, Gs G [0,1]). 

To proceed, we define the family {Gp, Gs} to be all traffic 
load density pairs {gp,gs} whose aggregate values are fixed 
and are equal to Gp and Gs, respectively. We will next derive 
a necessary condition for a traffic load density pair to be opti- 
mal in the family {GP,GS}. Note that according to the sim- 
plifying assumption, if the aggregate traffic loads are fixed, the 
capture probabilities are only functions of the location in a cell. 
Thus, when we focus on the family {Gp, Gs}, we denote the 
capture probabilities in the primary and secondary cells sim- 
ply by Pp and Ps, respectively. It turns out that the necessary 
condition for solving the optimization problem can be given in 
the following simple form. 

Theorem 1: Given values of the aggregate traffic loads GP 

and Gs, suppose that {gp, gs} is the optimal traffic load den- 
sity pair in the family {GP, Gs}. Then, there exists a positive 
constant c*o such that 

PP(X) 
q*p(x)    =   0. for all x such (hat _  ) ;< ot0,      (4) 

Ps\x) 
PP(X) 

g%(x)    =    0, for 8:H x such tlvit -f)-f > a0.      (5) ybK ' Ps{x) 

The proof of Theorem 1 is given in [2]. Theorem 1 states that 
the optimal solution to (3) is in the form of bang-bang control, 
in the sense that the users that are scheduled for transmission 
in a primary cell are selected from regions that are completely 
complementary to the users that are scheduled for transmission 
in a secondary cell. Therefore, the optimal throughput density 



0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 

Distance to Base-station 

Fig. 3.   Illustration of bang-bang optimal scheduling in general cases 

is given by 

» 
\gp{x)PP{x), 

\g*s{x)Ps{x), 

for all x : §4*1 > aQ 

Ps(x)   ^ "°- for all x 

This bang-bang type of scheduling is illustrated in Figure 3. 
From Figure 3, we can see that the cell is partitioned into two 
complementary regions, where users in Region I are scheduled 
for transmission only in a primary cell (i.e., 9s(x) = 0, for x in 
Region I), while users in Region II are scheduled for transmis- 
sion only in a secondary cell (i.e., g*P{x) = 0, for x in Region 
II). For example, recall that so far we focus on carrier-set A 
and cell 1 is a primary cell. Thus, carrier A is used to serve 
only users in Region I of cell 1. However, when we consider 
carrier-set B, cell 1 becomes a secondary cell. From the same 
argument, we would then schedule users in Region II of cell 1 
on carrier B. 

We next state an important corollary when Pp(x)/Ps(x) is 
monotonically increasing. 

Corollary 1: Suppose that Pp{x)/Ps{x) is a monotoni- 
cally increasing function ofx} Given values of the aggregate 
traffic loads Gp and Gs, suppose that {gp, <?£} is the optimal 
traffic load density pair in the family {Gp, Gs}. Then, there 
exists a number XQ € (0,1) such that 

g*p(x)    =   0 for allx 6 (0,x0) 

gs(x)    =    0 for all x e (x0,l) 

(7) 

(8) 

The proof of Corollary 1 is given in [2]. Our analysis and simu- 
lation results with standard physical layer propagation models 
show that Pp(x)/Ps(x) is usually monotonically increasing. 
The corollary states that under this monotonicity condition, the 
optimal scheduling policy is to schedule only those users in a 
secondary cell that are a distance (0, xo) away from its base- 
station, and only those users in a primary cell that are a dis- 
tance (x0,1) away from its base-station. This corollary agrees 

*To obtain Equations (7) and (8) in the corollary we only require that 
there exists XQ such that Pp(x)/Ps(x) > ao for all x £ (a;o,l), and 
Pp(x)/Ps(x) < ao for all x 6 (0, xo), where ao is the parameter de- 
scribed in Theorem 1. 

with our intuition (see Figure 2) of scheduling "far" users at 
higher power in a primary cell, while "near" users at a lower 
power in a secondary cell. What the above corollary (and The- 
orem 1) also tells us is that even for the optimal scheduling 
policy, it may not be necessary to precisely estimate the cap- 
ture probability or location of each user for implementing the 
primary/secondary coordination scheme. Instead, a rough esti- 
mate of which region a user belongs to suffices. 

C. Optimal Solution with Uniform Fairness Constraint 

Theorem 1 and Corollary 1 provide necessary conditions for 
the optimal scheduling problem (3). However, to quantitatively 
calculate the optimal scheduling policy, we need to explicitly 
evaluate the parameter ao and density functions gp and gs. 
This means that the functions / and h in (3) must be explicitly 
defined. To illustrate the optimal scheduling solution, we next 
consider a specific case with the uniform fairness requirement. 

Consider the following optimization problem: 

maximize 
s€S f Jo 

s(x) dx 

subject to       max s(x) — min s(x) = 0 (9) 

The uniform fairness requirement indicates that the optimal 
through is constrained to be a constant, which we denote by 
s*. 

By applying the necessary condition of Theorem 1, Prob- 
lem (9) is easy to solve. We integrate Equation (6) to obtain 

dx=\cP,  (10) 

s*Lspk)dx = \L/s{x)dx=\Gs>(ll) 

where <&p — {x\Pp{x)/Ps{x) > a0} and $s = 
{x\Pp(x)/Ps(x) < a0}. Here, a0 is the parameter described 
in Theorem 1 and can be determined by solving the following 
single-variable equation: 

GP Gs 

S< *p Pp{x) dx      J, l 
$s Ps(x) dx 

(12) 

By solving either Equation (12), we can obtain the value 
of the parameter ao or XQ, and then determine the optimal 
throughput with Equations (10) and (11). Problem (9) has also 
been solved for CDPA and TDM A in [1]. In fact, as we noted 
previously, CDPA and TDMA can be viewed as special cases 
of the coordination scheme, i.e., 7 = 1, Pp(x) = Ps{%), 
and Gp{x) = Gs{x) for CDPA, and 7 = 0, x0 = 0, and 
Gs(x) = 0 for TDMA. Therefore, their solutions can be eas- 
ily derived from that for the coordination scheme. We have 
further investigated optimization problems with more general 
non-uniform fairness constraints. However, for space consid- 
erations we do not provide it here, and refer to [2]. 



V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of our pri- 
mary/secondary coordination scheme via both numerical anal- 
ysis and simulation, and compare it with CDPA and TDMA 
schemes. 

We consider a standard propagation model for performance 
evaluation which takes into account Rayleigh fading, lognor- 
mal shadowing, and 77-th power path loss. Specifically, the 
power WR (at the receiver), received from a transmitter located 
at a distance x away, is given by 

WR = aHoP^Ax-^Wr (13) 

Here, a2 is a Rayleigh distributed random variable with unit 
mean, £ is a Gaussian random variable with zero mean and 
variance a2, Ar-77 accounts for the path loss and antenna gain, 
and WT is the transmitted power which takes the normalized 
value of either 1 or 7, depending on the designation of the pri- 
mary/secondary cell. As in [1], we assume for simplicity, that 
packet transmissions in different cells are synchronized on a 
common slotted time basis, so that transmissions in different 
cells overlap completely. 

A. Analysis Model 

The analytical method for determining the optimal schedule 
of the primary/secondary coordination scheme is as follows. 
First, for a given set of Gp and Gs, we compute the capture 
probabilities PP and Ps. Specifically, we focus on an arbitrary 
cell, called "cell zero". Let the index "0" denote the intended 
signal in cell 0, and index "i" denote interference from cell i. 
Based on the propagation model (Equation (13)) and the cap- 
ture model (Equation (1)), we can calculate the capture proba- 
bility as follows: 

pP(x0) = PIEieveni#oxrwR*°+ j:i:oddx>wRil > b\ 

where WRi = a210°Ui Ax~v. Ps(x0) can be calculated sim- 
ilarly. Here, x0 is the distance from the intended mobile user 
to the base-station in cell 0, and xt is the propagation distance 
associated with cell i. Binary random variables xf and xf 
indicate whether a transmission occurs or not in cell i when 
the cell is primary and secondary, respectively: xf = 1 (witn 

probability GP), or xf = 1 (with probability Gs), if a trans- 
mission occurs. For downlink communication, xt is the dis- 
tance between the intended mobile user to the base-station of 
cell i, which is determined by x0. For uplink communication, 
xt is the distance between the transmitter in cell i to the base- 
station in cell 0, which is independent of x0. In our numeri- 
cal analysis, we assume that xt is uniformly distributed in cell 
i. However, this uniform assumption represents an approxima- 
tion, since generally the optimal traffic load is not uniform. We 

will investigate the impact of this approximation by comparing 
the analysis and simulation results in Section V-C.2. 

We employ numerical integration methods to evaluate Pp 
and Ps, and then calculate the optimal traffic load pair 
{g*p, g^} in the family {GP, Gs}, based on the necessary con- 
dition (Theorem 1). In particular, we can solve the optimal pair 
{g*P,g*s} from single-variable Equations (10)-(12) for Prob- 
lem (9). Finally, we obtain the overall optimal solution by enu- 
merating the values of GP and Gs from 0 to 1. 

B. Simulation Model 

We verify the numerical analysis results by comparing them 
with simulations. Note that in our analysis, the only perfor- 
mance measure that we have taken into account is the through- 
put. However, as noted previously, because of capture failure 
and packet retransmission, delay is another important perfor- 
mance measure of the capture based spectrum reuse method. 
In our simulation, we will also investigate the delay due to re- 
transmissions. 

Our simulation model is a linear cellular system consisting 
of 10 cells, where each cell has two adjacent cells. The bound- 
ary cells on the two sides are then connected to each other to 
avoid the "edge effect." In each cell there are 200 equally- 
spaced grids, and mobile users in the cell are located at those 
grids. In the simulation, packets are transmitted in the cellu- 
lar system as follows. For uplink communication, during any 
time-slot one new packet is generated at grid i, independently 

from any other grid, with probability Si. Let S= J2i=i -% 
be the aggregate new packet arrival rate, which is equal to the 
aggregate throughput if the system is stable. New packets, af- 
ter arrival, are queued at the corresponding grids. We assume 
that by some request signaling, the base-station is immediately 
notified as soon as a new packet arrives at any grid. In other 
words, the base-station is always aware of the queue length at 
each grid in the cell. In any time-slot, the base-station first 
decides whether to transmit during that time-slot, with a per- 
mission probability ß. If so, it selects a user at one grid in 
the cell, according to a scheduling algorithm and the cell par- 
titioning (i.e., the bang-bang control), and then commands the 
user to transmit a packet in the corresponding queue. The per- 
mission probability is used to avoid congestion, as will be ex- 
plained later in Section V-C.l. We use the following proba- 
bilistic scheduling algorithm for the base-station to select one 
of the grids in the cell. Suppose that in any time-slot, the queue 
lengths at all grids are qiti = l,..., 200. Then, in a primary 
(secondary) cell, the probability that grid i in Region I (Region 
II) is selected is &/ J2i 9»» wnere the summation is done over 
all grids in Region I (Region II). The downlink case can be 
simulated similarly. 

For both downlink and uplink communication, all transmis- 
sions in the cellular system are examined at the receivers, each 
of which checks Equation (1) to determine whether capture oc- 



curs based on the propagation model given in Equation (13). 
If capture occurs, the transmitted packet is removed from the 
queue at the grid; otherwise, it remains in the queue, waiting 
for the next transmission opportunity. 

C. Numerical Results 

In our numerical analysis and simulation, we use the follow- 
ing parameters: r\ = 4, a = 6 dB. The static power control 
parameter is 7 = 0.1. When we check whether capture oc- 
curs, we take into account interference from four closest neigh- 
boring cells (i.e., two immediately adjacent, and two next-to- 
immediately adjacent cells). In this study, we consider three 
scenarios, 6 = 6,10, and 15 dB, to represent various technolo- 
gies in current and future wireless systems. 

We compare our primary/secondary coordination scheme 
with both CDPA and TDMA. Since CDPA can be viewed as 
a simplified version of the coordination scheme with Gp = 

Gs(= G) and 7=1, the methods of numerical analysis and 
simulation for CDPA are similar to what have been described 
for the coordination scheme. We also consider packet-switched 
TDMA which, does not maintain continuous connections and 
allows packet retransmission. The reuse factor is set to be 2. 
Hence, the packet-switched TDMA system that we study here 
is almost the same as CDPA, except that every other cell, in- 
stead of all cells, are allowed to transmit in any time-slot.§ 

C. 1 Maximum Throughput with Uniform Fairness Constraint 

In this section, we investigate Problem (9) via numerical 
analysis. For a set of aggregate traffic loads Gp and Gs in 
the coordination scheme, we calculate the overall throughput 
S based on the discussion in Section IV-C. By varying Gp 
and Gs from 0 to 1, we obtain the overall optimal throughput 
for the coordination scheme. We can similarly investigate the 
optimal throughputs for CDPA and TDMA. Figure 4 plots S 
versus G for downlink communication in CDPA and TDMA, 
with 6 = 6, 10, and 15 dB. Figure 5 plots downlink S versus 
Gp and Gs in the coordination scheme when 6 = 6, 10, and 
15 dB. 

We find that when 6 = 6 dB, because capture occurs rela- 
tively easily, CDPA achieves better throughput than TDMA. 
However, the coordination scheme outperforms TDMA by 
85% and CDPA by 35% in terms of maximum throughput. 
When the capture ratio is increased to 10 dB, the throughput 
curve of CDPA reaches a maximum for G < 1. This indicates 
that CDPA suffers congestion because of excessive intercellu- 
lar interference. From Figure 4, it is clear that at 6 = lOdB, 

^Strictly speaking, in standard TDMA, we have to adjust the reuse distance 
(and reuse factor) for different values of the capture ratio. Standard TDMA 
typically requires a reuse factor strictly larger than 2. Thus, the maximum 
throughput would be 1/3 at most. However, we find that in all our numerical 
results, the throughput of the packet-switched TDMA system that we use ex- 
ceeds 0.4. Therefore, our comparison is with a fairer (and better in terms of 
throughput) version of TDMA. 
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Fig. 4.  Plot of downlink optimization for Problem (9) with CDPA and TDMA 
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Fig. 5.    Plot of downlink optimization for Problem (9) with coordination scheme: (a) 
b = 6 dB, (b) 6 = 10 dB and (c) 6 = 15 dB. 

the improvement of CDPA over TDMA is marginal. However, 
the coordination scheme outperforms both by more than 50% 
in terms of maximum throughput. An interesting observation 
is that the throughput surface shown in Figure 5(b) reaches the 
maximum point at Gp = 1 and Gs = 1, which indicates 
that although spectrum is reused in all cells the coordinated 
power control scheme significantly reduces the capture prob- 
ability. When the capture ratio is further increased to 15 dB, 
the excessive interference dramatically reduces the throughout 
in CDPA, which now performs even worse than TDMA. Note 
that in the coordination scheme, the maximum throughput is 
also not reached at the point where Gp = 1 and Gs = 1, 
indicating that many retransmissions may occur even with the 
static coordinated power control. From Figure 5(c), we find 
that the coordination scheme outperforms TDMA by 26% and 
CDPA by 60% in terms of maximum throughput. 

Similarly, we compare the throughput performance for the 
uplink communication, and find that the results are similar. 
We summarize the maximum throughputs, for both uplink and 
downlink communication, of the coordination scheme, CDPA 



TABLE I 

A Comparison of the maximum achievable throughput using CDPA, TDMA and the 

coordination scheme 

TABLE II 

A comparison of throughput-delay tradeoff using CDPA, TDMA and the coordination 

scheme. 

Downlink Uplink 

Capture ratio (dB) 6 = 6 6 = 10 6 = 15 6 = 6 b = 10 b = 15 

Coordination 0.89 0.77 0.57 0.90 0.81 0.62 

CDPA 0.66 0.49 0.36 0.80 0.65 0.41 

TDMA 0.50 0.49 0.47 0.50 0.49 0.47 

and TDMA for different values of the capture ratio in Table I. 

C.2 Throughput-Delay Tradeoff with Uniform Fairness Con- 
straint 

In this section, we provide simulation results to verify the 
analysis presented in Section V-C.l. Recall that the results for 
uplink were derived based on the simplifying assumption made 
in Section IV-B. In simulation, we find that the coordination 
scheme can in fact achieve throughputs that are close to those 
maximum values calculated in Table I. However, the associ- 
ated delays can be large. We observe similar phenomena with 
both CDPA and TDMA, and also in downlink communication. 

To make the comparisons more meaningful, we next inves- 
tigate the throughput-delay tradeoff. Specifically, for a given 
new packet arrival rate S (which is equal to the throughput in 
a stable system), we estimate the expected delay D, in terms 
of time-slots, that a packet experiences from the instant of ar- 
rival to the instant when the packet is successfully received. 
This figure includes both queueing delay and retransmissions. 
To maintain uniform throughput in a cell, the new packet ar- 
rival rate at any grid is thus given by 5, = 5/200. To control 
congestion, we set the permission probability as the aggregate 
traffic load that reaches the maximum throughput in the nu- 
merical analysis of Problem (9). The cell partition parameter 
xo is determined by solving Problem (9), and is then used in 
the simulation of the coordination scheme. Clearly, the choice 
of x0 is not optimized for minimizing the delay with a given 
throughput S, and therefore the performance of the coordina- 
tion scheme is conservative. 

We compare the expected delay versus throughput in both 
downlink and uplink. To save space, we summarize the simu- 
laiton results in Table II. Detailed curves can be found in [2]. 
Overall the relative performance improvements of our scheme 
over both CDPA and TDMA, as observed from simulation, 
in terms of throughput-delay tradeoff are numerically close to 
those in terms of maximum throughput from the analysis in 
Section V-C.l. Specifically, For a fixed expected delay, say 10 
time-slots, we compare the associated throughputs. In down- 
link, the coordination scheme outperforms TDM A by 80% and 
CDPA by 30% at b = 6 dB, outperforms TDMA by 55% and 
CDPA by 50% at b = 10 dB, and outperforms TDMA by 17% 

Capture ratio (dB) 6 = 6 b = 10 b = 15 

Delay constraint 10 103 10 103 10 103 

Downlink 

Coordination 0.80 0.89 0.68 0.76 0.47 0.57 

CDPA 0.62 0.66 0.45 0.49 0.33 0.36 

TDMA 0.45 0.50 0.44 0.49 0.41 0.46 

Uplink 

Coordination 0.80 0.90 0.72 0.80 0.55 0.62 

CDPA 0.75 0.80 0.57 0.62 0.36 0.40 

TDMA 0.45 0.50 0.44 0.49 0.41 0.46 

and CDPA by 47% at b = 15 dB. Moreover, the performance in 
uplink communication is similar to that in downlink communi- 
cation, and is consistent with the analysis in Section V-C.l. In 
particular, the maximum value observed in simulation is close 
to that obtained in the analysis, for all three schemes and all 
the choices of b. This indicates that the simplifying assump- 
tion made in Section IV-B and in [1] is reasonable. 

VI. CONCLUSION 

We have presented a static coordinated power control 
scheme in packet-switched wireless systems. Our basic idea 
is to reduce intercellular interference and improve the cap- 
ture probability by coordinating transmission powers of users 
in different cells. The coordination is determined beforehand 
and no real-time intercellular coordination is required. The 
power control is static and fixed, leading to simplicity in im- 
plementation. We have formulated and solved a generic op- 
timal scheduling problem with our coordination scheme. We 
find that the optimal scheduling policy is in a simple form of 
bang-bang control: each cell is partitioned so that users in dif- 
ferent regions are served with different levels of transmission 
power. Numerical results show that the coordination scheme 
can achieve significant performance improvements over both 
CDPA and TDMA, in terms of both maximum throughput and 
throughput-delay tradeoff, over a wide range of the capture ra- 
tio values. 
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Abstract 

Due to the fast-growing demand for network capacity in wireless networks, 
the characterization of network capacity has become a fundamental and pressing 
issue. In this paper, we study the network capacity of single-cell synchronous 
CDMA systems with matched filter receivers in fading channels, assuming known 
distributions of received powers of mobile users. We find necessary and sufficient 
conditions on the admissibility for both single class and multiple class systems with 
random signatures. For systems with deterministic signatures, we give a necessary 
and sufficient condition on the admissibility for single class systems, but only a 
sufficient condition for multiple class systems. We identify the network capacity of 
single class systems for both the random signature case and deterministic signature 
case. The network capacity can be uniquely expressed in terms of the users' QoS 
requirements and the distributions of the received powers. 

1    Introduction 

Due to the fast-growing demand for network capacity in wireless networks, it is essential 
to utilize efficiently the limited resources in fading channels. The characterization of 
network capacity is therefore one of the most fundamental and pressing issues in wireless 
network research. In this paper, we consider a model for the uplink of a single-cell 
synchronous CDMA system in fading channels. 

Much of the previous research on CDMA systems has been restricted to the physi- 
cal layer, focusing mainly on the performance of linear receivers in worst-case scenarios. 
Near-far resistance and asymptotic efficiency have been studied as two important per- 
formance measures (see [10] for a survey of the literature). At the network layer, there 
have been considerable efforts on power control [3, 9, 12]. The sophisticated techniques 
for allocating network resources at both the physical layer and network layer aim to 
improve network capacity. Unlike in TDMA and FDMA systems, however, there is no 
clean separation between resource allocation at the physical layer and network layer in 
CDMA systems. A natural question to address is the performance of linear receivers 
in power-controlled CDMA systems. In [8], Tse and Hanly characterized the network 
capacity for systems with several important receivers via a notion of effective bandwidth. 

'Supported in part by the National Science Foundation through grant ECS-9501652 and by the U.S. 
Army Research Office through grant DAAH04-95-1-0246. 



assuming users have random signatures. In [11], Viswanath, Anantharam, and Tse stud- 
ied the joint optimization problem of designing the multiuser receiver structure, power 
control, and spreading sequences, and obtained simple characterizations of the resulting 
network capacity in various scenarios. Both [8] and [11] assumed perfect power control 
in characterizing network capacity. In a practical wireless communication system, how- 
ever, multipath fading is ubiquitous, making perfect power control impossible. Little 
work has been done on network capacity of CDMA systems with multiuser receivers 
in fading channels. In this paper, we study the admissibility and network capacity in 
power-controlled CDMA systems in fading channels. All our results assume a matched 

filter receiver, which is the designated receiver for CDMA systems in IS-95. 
The organization of the rest of this paper is as follows. In Section 2 we give some 

background for our model of power-controlled CDMA systems. In Section 3, we study 
the admissibility and network capacity for single class systems, and define the concept 
of effective target SIR. In Section 4, we extend the study to multiple class systems, 
and define effective bandwidth for power-controlled CDMA systems in fading channels. 

Finally, we draw some conclusions in Section 5. 

2    Preliminaries 
In a synchronous CDMA system, each user, say user k, is assigned a binary (±1 valued) 
signature of length L, Sk = -^{Wku ... ,WkL)T, where Wki is either 1 or -1 for i = 
1,..., L. The user's information symbols are spread onto its signature. We will study 
CDMA systems for the following two cases. The first is the deterministic signature case, 
by which we mean that the users' signatures are jointly designed and deterministic when 
they are admitted into the system (cf., [6, 11]); the second is the random signature case, 
by which we mean that users choose their signatures randomly and independently when 
they are admitted into the system, which models the situation where the information 
symbols are spread onto pseudo-random spreading sequences (cf., [8]). 

Suppose users transmit data over a fading channel. Typically, fading channel gains 
are assumed to be stationary and ergodic, and all the users in one class are assumed to 
have independently and identically distributed channel gains (see [5]). As pointed out in 
[2] and [8], it is ideal to have the received powers for all the users in one class to be the 
same all the time. However, it is very difficult to implement perfect power control and 
the received powers fluctuate around the desired levels in a practical system. Assuming 
that the same kind of power control algorithm is applied to all users in one class, by 
symmetry, we model the received powers for all users in one class to be independently 
and identically distributed in a large network. For technical reasons, we also assume that 
power control is good enough to ensure that the fluctuation around the expected received 

power is bounded (say by d) with probability one. 
We assume that the distributions of the received powers are known. This assumption 

is reasonable (cf., [4, Chapter 6]). From a practical viewpoint, the distributions of the 
received powers can usually be obtained through measurements (see [7]). We aim to 
study the admissibility and network capacity in the limiting regime, that is, when both 
M and L go to infinity. As in [8], ß = f is taken to be fixed as L goes to infinity. 



3    Single Class Systems 

Based on [S, 9], we have the following discrete-time model for a synchronous CDMA 
system. Suppose there are M users in the system when the processing gain is L. For any 
symbol interval, the baseband received signal at the front of the receiver is 

M 

I 
fc=i 

M      ,  

y = J2yplL)hsk + v, (i) 

where the b^s are the transmitted information symbols and the P^ ^'s are received powers 
for k = 1,..., M, and V is M(0, rjl) background white noise that comes from the sampling 
of the ambient white Gaussian noise with power spectral density -q. The received powers 
are assumed to be i.i.d. with distribution FL, which has a density function and mean 
/J,(

L
\ When L goes to infinity, we assume that the sequence of functions {FL} converges 

weakly to F, which denotes the distribution of the received powers in the limiting regime. 
Let P0 denote a random variable that has distribution F and mean fi. For convenience, 
we further assume the modulation is antipodal, that is, bk € { — 1,1}. 

Assume the signature Sk of user k is known to the receiver for it. Then the received 
SIR (signal-to-interference ratio) for user k after passing the matched filter is 

SIR{L) = 77-^m  fc = l,..".,M. (2) 

Since the received SIR's are random variables under our assumption, we adopt a 
probabilistic model for the users' QoS requirements as follows: 

P{SIR{L) > 7} > a Vfc = l,...,Af. 

3.1    The Deterministic Signature Case: Admissibility and Net- 
work Capacity 

In this case, the users' signatures are deterministic, and the signatures of all the M users 
form a signature set when the processing gain is L. When L goes to infinity, we have 
a sequence of signature sets. Let T denote the collection of sequences of signature sets 
satisfying the following condition: 

sup (SfSj)2 log L ->• 0 as L -> 00, (3) 
i,j<M 

where Si and Sj are the signatures for user i and j respectively when the processing 
gain is L, i,j E {1,...,M}. In the proceeding parts where sequences of deterministic 
signature sets are chosen, we assume that all sequences are in T. 

First we define admissibility for a class of users as follows: when the processing gain 
is L, ß users per degree of freedom of the processing gain are admissible in the system 
if and only if there exists a signature set {Si,..., SM} for the M users, where M equals 
ßL, and the users' QoS requirements are satisfied when {Si,..., SM} are allotted to the 
users, that is, 

P{SIR[L) > 7} > a,     Vfc = l,...,M, 



which is equivalent to 
max    mm 

{Si,...,SM}    k 
P{SIR[L) >l}>a. (4) 

Asymptotic admissibility is defined as follows: we say ß users per degree of freedom of 
the processing gain are asymptotically admissible when the following condition holds: 

lim     max    minP{SIR.[ ' > 7} > a. 
L-too{Si,...,SM}     k 

As pointed out in [11], when M < L, we can always choose an orthogonal signature 
set such that there is no interference between users. Then each single user transmits 
data as if it were in a single-user channel. This case is not of real interest since we 
want to find the maximum number of users supportable by the system. For the case 
M > L, our results make use of WBE (Welch Bound Equality) signature sets. (See [6] 
for the definition of WBE sequence sets. Note that we use the terminology "signature 
set" instead of "sequence set" to avoid confusion since we will discuss sequences of such 

sets.) 
Assuming lim^«, maxfc J2f=i(SkSj)2 < 00, we have the following proposition on the 

asymptotic admissibility for the deterministic signature case. 

Proposition 3.1 Suppose all sequences of deterministic signature sets are chosen from 
J7. Then ß users per degree of freedom of the processing gain are asymptotically admissible 

if and only if ß<^=^+ 1-1 

Proposition 3.1 illustrates the fact that the asymptotically admissible region is ß < 
F~1(l~a) + 1 _ a. Following [81, we can call F"~1(1~^ + 1 - 77 the network capacity in the 

limiting regime (to be distinguishable from the concept "asymptotic network capacity 
which is introduced below) for the given distribution of; the received powers. 

In practical CDMA systems, the processing gain is finite and large. Therefore, one 
basic question to ask is, "How many users are admissible for some large (but finite) 
processing gain while the users' QoS requirements are fixed?" Basing only on Proposi- 
tion 3.1, however, we cannot answer this interesting question. (The subtlety will be more 
clear in the proceeding discussions.) This motivates us to develop another approach that 
studies a sequence of network capacities indexed by the processing gain L. We proceed 

to elaborate on this idea in detail. 
When the processing gain is L, we let CL denote the set of all the admissible points, 

that is, 

CL = Iß     max    minP{SIR(
k
L) > 7} > a \ . 

Of particular interest is the maximum number of users admissible by the system, which is 
defined to be the network capacity in terms of the number of user;; per degree of freedom 
of the processing gain. That is, the network capacity is the maximum number of users per 
degree of freedom of the processing gain that are admissible in the system, and depends 
on a. Therefore, when the processing gain is L, we can define network capacity as follows: 

ßL(a) = sup CL = sup l ß max    min P{SIR{
L)
 > 7} > a \. (5) 

{Si,...,SM}     k j 

The asymptotic network capacity ßoo{a) is defined as the limit of ßL(a) when L -> 00, 
that is, ßoo(a) = Hindoo ßM- Note that the network capacity in the limiting regime and 



the asymptotic network capacity are different in principle (compare the two definitions). 
A priori, we do not know if they lead to the same expression. 

We aim to identify the asymptotic network capacity. For technical reasons, we assume 
that the received powers in the limiting regime have a connected support, which implies 
that the distribution function F is strictly increasing over its support. We have the 
following proposition on the asymptotic network capacity for the deterministic signature 
case. 

Proposition 3.2 Suppose all sequences of deterministic signature sets are chosen from 
T. Then the asymptotic network capacity is ßoo(a) = —-ikz^l _|_ 1 _ n.) which can be 
achieved through a sequence of WBE signature sets in T. 

It turns out that for the deterministic signature case, the nehuork capacity in the lim- 
iting regime and the asymptotic network capacity, which are different in principle, lead 
to the same result under the auxiliary assumption made on the distribution function F. 
In general, the network capacity in the limiting regime is an upper bound of the asymp- 
totic network capacity. The asymptotic network capacity, however, provides a better 
approximation of the network capacity of a large network. In particular, by exploiting 
Proposition 3.2, we can conclude that for a given e > 0, ß00(a) — e users per degree of 
freedom of the processing gain are admissible in the system for very large L (L > LQ(C) 

for some Lo(e)). 
Worth noting is that sequences of WBE signature sets in T play a very important 

role in both the asymptotic admissibility and asymptotic network capacity. A heuristic 
interpretation is that the choice of WBE signature sets is asymptotically optimal in the 
sense of suppressing the interference of all the users simultaneously. 

3.2      The Random Signature Case: Admissibility and Network 
Capacity 

In this case, users choose signatures randomly and independently, which models the 
situation where the information symbols are spread onto pseudo-random spreading se- 
quences. When the processing gain is L, the model for random signatures is as follows: 
Sk = TE(W*I, •.., WkLf, where the Wki's are i.i.d. with P(Wki = 1) = P(Wki = -1) = \ 
for i — 1,..., L and k = 1,..., M. 

Since the Pk
( J's are i.i.d., and the W^s are i.i.d., the received SIR's for users are also 

identically distributed. Hence, P{SIRk ' > 7} does not depend on k, and we can study 
user 1 without loss of generality. 

Assume that the signature for a user is known to the receiver for it. Given the 
distribution of the received powers, we define admissibility for a class of users with random 
signatures as follows: when the processing gain is L, ß users per degree of freedom of the 
processing gain are admissible in the system if 

P{SIR[L) > 7} > a. 

We say ß users per degree of freedom of the processing gain are asymptotically admissible 
if the following condition holds: 

lim P{Sm[L) > 7} > a. 
L—¥oo 

We have the following proposition on the asymptotic admissibility for the random 
signature case. 



Proposition 3.3 Suppose users choose signatures randomly and independently.  Then ß 
users per degree of freedom of the processing gain are asymptotically admissible if and 

on/yiy/?<*r£*l-J. 
We call F '(1~a^ - R the network capacity in the limiting regime for the given distri- 

bution of the received powers. 
Similar to the deterministic signature case, when the processing gain is L7 the net- 

work capacity is defined as the maximum number of users per degree of freedom of the 
processing gain that are admissible in the system, that is, 

ßL(a) = suV{ß\P{SIR[L) > 7} > a} . 

We define asymptotic network capacity ß^a) as the limit of ßL(a) when L ->• oo, that 

is,/?oo(a) = limL_>00/?L(a). 
Again, for technical reasons, we assume the received powers in the limiting regime 

have a connected support and hence F is strictly increasing over its support. Then 
we have the following proposition on the asymptotic network capacity for the random 

signature case. 

Proposition 3.4 Suppose users choose their signatures randomly and independently. 

Then the asymptotic network capacity is ßoo(a) = —^-^ — ^. 

It turns out that for the random signature case, the network capacity in the limiting 
regime and the asymptotic network capacity, which are different in principle, also lead to 
the same expression under the auxiliary assumption made on the distribution function 
F. It can easily be observed that a system using optimal deterministic signatures yields 
precisely one more user per degree of freedom of the processing gain than one system 
with signatures randomly and independently chosen, which is a generalization of the 

result given in [11] under perfect power control. 

3.3    Effective Target SIR 
We proceed to look for an abstraction that can combine the information of both QoS 
requirements and the distributions of received powers for determining the asymptotic 
admissibility. In a power-controlled system, the actual received powers depend on the 
fading environments and the performance of the power control algorithms. Note that if 
ß users are not asymptotically admissible for a given received power distribution, it may 
still be possible to make ß asymptotically admissible by scaling up the received power. 
Referring to the definition of scale family in [1, p. 118], we consider the scale family 
Q = {^(£2.);C > 0}, where F is the distribution function of P0. Define 7' = 7ce, where 

c   =       f        Clearly, ce is fixed for the scale family Q. We call 7' the effective target 

SIR for Q. 
Note that in a given scale family of distributions, there exists a one-to-one corre- 

spondence between distribution and mean. Given a scale family Q of received power 
distributions, a basic question to ask is if there exists a finite positive value that can be 
designated as // such that ß users per degree of freedom of processing gain are asymp- 
totically admissible for the corresponding received power distribution in Q. For the 
deterministic signature case, it can be shown that there exists a finite positive solution 
for \i if and only if ß-^ < 1; moreover, the minimum value for /J, is n^r / 1 - ßj^r 
. For the random signature case, it is easy to obtain that there exists a finite positive 
solution for fj. if and only if ßi < 1; the minimum value for \i is j^y • 



4      Multiple Class Systems 

We have studied the asymptotic admissibility and identified the asymptotic network 
capacity for single class systems in the above section. However, future wireless systems 
will have to support multimedia services such as voice, data, video, and fax. Therefore, 
it is essential to have a level of generalization dealing with users having different QoS 
requirements. 

Suppose there are a fixed number, say N, of classes. For n = 1,..., iV, let An denote 
the set of users in class n and Mn the cardinality of An. Let 5'tra denote the signature for 
the ith user in class n. Define ßn = —^ and let ßn be fixed when L —)- oo as in the single 
class case. 

The received SIR for the ith. user in class n is 

{L)_  /#>  
IRin ~ v + E*» P^isiSitf + E«*I„ pLL)(s?nslny ' (6) 

where P/n ' denotes the received powers for i G An and n = 1,..., N when the processing 
gain is L. 

Again our results are asymptotic in nature. For the sake of simplification, as in the 
single class case, we let Pn denote a random variable that has the same distribution Fn 

as the received powers of users in class n in the limiting regime, and assume that Fn has 
a density function and mean fin. For convenience, we call the collection {Fi,..., F;v} 

a group of received power distributions, and P = (//i,... ,/J.N)
T
 the mean power vector. 

Suppose it is required that the users in class n must have received SIR greater than or 
equal to 7„ with probability no less than an G [0,1]. 

4.1    The Deterministic Signature Case: Admissibility, Effective 
Target SIR, and Effective Bandwidth 

We assume that every chosen sequence of signature sets satisfies (3) and 

UmL-HnmxxieAnllieAjiSinSijY < °° for a11 ni 3 € {1,...,N}. Let /,-„ = SfnDSin, 

where D = J2f=i ^ieA SijSfjVj- Then we have 

SIP±V ^    M^
n_ as L -^ co. 

7    I   * in        ßn 

Similar to the argument in the single class case, it is desirable to design the signature 
sets such that all users' QoS requirements are satisfied. When E^Li ßn < 1, orthogonal 
signature sets will work and each single user transmits data as if it were in a single- 
user channel. When E^Li ßn > 1, however, a simple closed-form solution to the global 
optimization of the signature sets for this case seems unattainable. Therefore, we study 
a sufficient condition for the asymptotic admissibility of multiple class systems for this 
case. 

For the sake of simplification, first we let FM,U denote the signature set of class n 
when the processing gain is L. Given the distributions of the received powers, we say a 
tuple (/?i,...,/?jv) is asymptotically admissible if the following condition holds: 

lim   max minP{SIB$ > 7} > an Vn = l,...,iV. 
L-*-0O U„Fu„ leAn 



We have the following proposition on the asymptotic admissibility of users of multiple 

classes for the deterministic signature case. 

Proposition 4.1 A tuple (ßu ... ,ßN) is asymptotically admissible, if it satisfies the fol- 

lowing tioo conditions: 

N 

maxju„    <    Ysßjl1!' (7a) 
n *■—* 

Ete    <    min^^-^+AZn)-^. (7b) 

As in the single class case, we introduce the scale family Qn = {Fn(
l~),c > 0} for 

P„, where Fn is the distribution function of Pn, n = 1,..., N. Define j'n = 7„cen, where 
cen = -f^r—r. As before, cen is fixed for the scale family Qn. We call in the effective 

target SIR for Qn. For ease of reference, we call the collection {Qu.. .,QN} a group of 

scale families. 
Observe that in a given group of scale families, there exists a one-to-one correspon- 

dence between the mean power vector and the group of received power distributions. We 
have the following result for a given group of scale families {Qi,..., QN}- 

Proposition 4.2 There exists a finite positive vector that can be assigned as the mean 
power vector for a tuple (ßi,..., /?jv) to be asymptotically admissible for the corresponding 

group of received power distributions in {Qi,..., QN} if 

V N        V 

l+7;     £l     1 + 7; 
and 

n=l        X   '     In 

Observing the conditions given in Proposition 4.2, we are motivated to extend the 
insightful idea in [8] and define the effective bandwidth of class n for the deterministic 

signature case as e(7„) = y^r degrees of freedom per user. However, we are able to give 

only a sufficient condition for asymptotical admissibility of a tuple (ßi,... ,/3/v) in terms 
of effective bandwidth. Further work is needed for this case. 

4.2    The Random Signature Case: Admissibility, Effective Tar- 
get SIR, and Effective Bandwidth 

Similar to the approach in the single class systems with random signatures, we get 

SIR[L) ^  *»  as L -> 00. (8) 

We can study the first user in class n without loss of generality. 
Given the distributions of the received powers, we say a tuple (ßu ..., ßn) is asymp- 

totically admissible if the following condition holds: 

lim P{SIR{LJ > 7} > a» Vn = l,...,/V, 
L-4-oo 

We have the following proposition on the asymptotic admissibility of users of multiple 

classes for the random signature case. 



Proposition 4.3 Suppose users choose their signatures randomly and independently. A 
tuple (/?!,... ,/3/v) is asymptotically admissible if and only if 

X, ßnt-in < mm     - 77. (9) 
n-l V '" / 

Again we define -y'n = 7„cen, where cen = ^n—- is fixed for the scale family Qn, 

n = 1,..., N. We can easily obtain the following result for a given group of scale families 

{£i,..- ,GN}- 

Proposition 4.4 a). There exists a finite positive vector that can be assigned as the 
mean power vector for a tuple (ß\,... ,/3/v) to be asymptotically admissible for the corre- 
sponding group of received power distributions in {Qx,..., Q^} if and only if 

Eßnl'n<l. 
n=\ 

Similar to the deterministic signature case, we define the effective bandwidth of class n 
for the random signature case as e(7„) = 7^ degrees of freedom per user. Proposition 4.4 
states that for a given group of scale families, a tuple (/31?... ,/3/v) can be made asymp- 
totically admissible through power control if and only if the sum of effective bandwidth 
of all classes is less than one. 

5     Conclusions 

We have studied single-cell synchronous CDMA systems with matched filter receivers 
assuming known distributions of received powers of mobile users. We studied the asymp- 
totic admissibility for both single class systems and multiple class systems. For systems 
with random signatures, we gave necessary and sufficient conditions on the asymptotic 
admissibility in terms of effective bandwidth. For users with deterministic signatures, 
we gave a necessary and sufficient condition for single class systems, but only a sufficient 
condition for multiple class systems. Further work is needed for this case. 

We have also identified the asymptotic network capacity of single class systems for 
both the deterministic signature case and the random signature case. The asymptotic 
network capacity for single class systems can be uniquely expressed in terms of the users' 
QoS requirements and the distributions of the received powers. We also identified the 
optimal sequences of signature sets for the deterministic signature case in an asymptotic 
setting. Furthermore, we explored the concepts of effective target SIR and effective 
bandwidth, which play an important role in determining the asymptotic admissibility 
and hence the asymptotic network capacity. Our results are useful for network-level 
resource allocation problems such as admission control and power control in a large 
network. 

In this work we have focused on finding the network capacity so that we can determine 
how many users can be accommodated without sacrificing their QoS requirements. On 
the other hand, another fundamental issue is the channel capacity. Currently we are 
looking into this problem. 
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Abstract 

Due to the fast-growing demand for network ca- 
pacity in wireless networks, the characterization of 
network capacity has become one of the most funda- 
mental and pressing issues. While there have been 
considerable efforts to study CDMA systems at both 
the physical layer and network layer, the network ca- 
pacity of power-controlled CDMA systems with lin- 
ear receivers, especially in fading environments, is 
not well-understood. In this paper, we study a single- 
cell synchronous CDMA system equipped with the 
matched filter receiver in fading channels, and iden- 
tify the network capacity for single-class systems and 
the network capacity region for multiple-class sys- 
tems assuming known distributions of received pow- 
ers of mobile users. Both the network capacity and 
network capacity region can be uniquely expressed 
in terms of the users' QoS requirements and the dis- 
tributions of the received powers. We also find the 
tightest upper bound of the network capacity over 
all possible distributions of received powers, and ex- 
plore the concepts of effective target SIR and ef- 
fective bandwidth, which play an important role in 
determining the admissibility and characterizing the 
network capacity. 

1    Introduction 

Wireless networks have drawn a great deal of attention 
in the past decade. Due to the fast-growing demand 
for network capacity in wireless networks, it is essen- 
tial to utilize efficiently the limited resources such as 
scarce bandwidth and limited power in fading channels. 
The characterization of network capacity is therefore a 
fundamental and pressing issue in wireless network re- 
search. In this paper, we consider a model for the up- 
link of a single-cell synchronous CDMA system in fad- 
ing channels. The system consists of numerous mobile 
subscribers communicating with one base station, which 
is typically interconnected to a backbone network via a 

wired infrastructure. 

Much of the previous research on CDMA systems has 
been restricted to the physical layer, focusing mainly on 
the performance of linear receivers in worse-case sce- 
nario. Asymptotic efficiency and near-far resistance 
have been studied as two important performance mea- 
sures (see [12] for a survey of the literature). At the 
network layer, there has been considerable interest on 
power control (see, e.g., [3, 5, 15]). Yates [15] provided a 
framework for understanding the issue of convergence of 
some deterministic power control algorithms. A general- 
ization by Ulukus and Yates to stochastic power control 
algorithm can be found in [11]. Hanly [5] considered 
macrodiversity, derived the capacity region for the up- 
link of a radio network, and proposed a decentralized 
power adaptation algorithm. 

Unlike in TDMA and FDMA systems, there is no 
clean separation between resource allocation at the phys- 
ical layer and network layer in CDMA systems. Since 
the sophisticated techniques for allocating network re- 
sources at both the physical layer and network layer aim 
to improve network capacity, it is natural to ask how 
linear receivers perform in power-controlled CDMA sys- 
tems. In [10], Tse and Hanly characterized the network 
capacity for systems with several important receivers 
via a notion of effective bandwidth, assuming users have 
random signatures. In [14], Viswanath, Anantharam, 
and Tse studied the network capacity of a synchronous 
power-controlled CDMA system with multiuser receivers 
and identified the optimal signatures and power control 
strategies that make the users meet their QoS require- 
ments. However, both [10] and [14] assumed perfect 
power control in characterizing network capacity. In a 
practical wireless communication system, fading is ubiq- 
uitous, making perfect power control impossible. How- 
ever, little work has been done on network capacity of 
power-controlled CDMA systems with linear receivers in 
fading channels. In this paper, we study the admissibil- 
ity and network capacity in imperfect power-controlled 
CDMA systems in fading channels. All our results as- 
sume the matched filter receiver, which is the designated 



receiver for CDMA systems in IS-95. 
The organization of the rest of this paper is as fol- 

lows. In Section 2, we give some preliminaries for our 
model of an imperfect power-controlled CDMA system. 
In Section 3, we study the admissibility and network ca- 
pacity for single-class systems. We also address some 
issues on power control and define the concept of ef- 
fective target SIR. In Section 4, we extend the study 
to multiple-class systems, and define effective bandwidth 
for imperfect power-controlled CDMA systems in fading 
channels. Section 5 contains our conclusions. 

2    Preliminaries 

In a synchronous CDMA system with random spreading, 
each user chooses its signature randomly and indepen- 
dently. The model for binary random signatures is as fol- 
lows: sk = 7^(«fci, • ■ •»«fci)T. where L is the processing 
gain, and the ski's are i.i.d. with P{ski = 1} = P{ski — 
-1} = |, i = 1,..., L and k = 1,..., M. This model is 
applicable to several scenarios (see, e.g., [10, 13]). First, 
consider the situation where users employ' long pseudo- 
random spreading sequences with periods considerably 
larger than the number of chips per symbol interval (such 
as in IS-95 systems), which is the length of the signa- 
tures. In this case, it is sensible to adopt the model that 
users' signatures are randomly and independently cho- 
sen. A second scenario is the case where the signature 
of each user is repeated from symbol to symbol, but it is 
randomly and independently selected initially when the 
user is admitted into the system. 

Suppose users transmit data over a frequency non- 
selective fading channel. Typically, fading channel gains 
are assumed to be stationary and ergodic, and all the 
users in one class are assumed to have independently and 
identically distributed channel gains [4, 7]. The above 
assumption is very reasonable since interleaving and de- 
interleaving are usually employed in practical systems. 
As pointed out in [3] and [10], it is ideal to have the 
received powers for all the users in one class to be a" 
fixed predetermined value, a scenario called perfect power 
control. However, it is very difficult to implement perfect 
power control and the received powers fluctuate around 
the desired levels in a practical system. We model the 
received powers for users in one class to be independently 
and identically distributed. For technical reasons, we 
also assume that power control is good enough to ensure 
that the fluctuation around the expected received power 
is bounded (say by d) with probability one. 

We assume that the distributions of the received pow- 
ers are known (cf., [6, Chapter 6]). We aim to study 
the network capacity in the limiting regime, i.e., when 
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Figure 1: A simplified block diagram of the uplink of a 
CDMA system with the matched filter receiver 

limi-^oo x" = ß> however, it is more convenient to fix the 
ratio in the following discussions. 

3    Single-Class Systems 

Figure 1 depicts a simplified block diagram of the up- 
link of a CDMA system with the matched filter receiver. 
Since our purpose is not to evaluate or optimize mod- 
ulation performance, we assume for simplicity that the 
modulation is antipodal, that is, bk 6 {—1,1}. This 
assumption is not crucial, but simplifies the analysis. 
Based on [10, 11], we have the following discrete-time 
model for a synchronous CDMA system. Suppose there 
are M users in the system when the processing gain is L. 
For any symbol interval, the baseband received signal at 
the front end of the receiver is 

M      .  

Y = Y, yp{kL)hkSk + v, (i) 
fe=i 

where the bk 's are the transmitted information symbols 
and the P^'s are received powers for k = 1,..., M, and 
V is A/"(0, r)I) background white noise that comes from 
the sampling of the ambient white Gaussian noise with 
power spectral density TJ. The received powers are as- 
sumed to be i.i.d. with distribution function F^ which 
has a density function and mean //L). When L goes to 
infinity, we assume that the sequence of functions {F<- >} 
converges weakly1 to F, which denotes the distribution 
function of the received powers in the limiting regime. 
We assume that F has a density function and mean fi, 
and that lim^oo M(L) = I1- For convenience, we let P0 

denote a random variable that has distribution function 
F. 

Assume the signature Sk of user k is known to matched 
filter k. Then the received SIR (signal-to-interference 
ratio) for user k after passing the matched filter receiver 

both M and L go to infinity. As in [10], ß = ™ is taken  
to be fixed as L goes to infinity.   In fact, we only need 'See [1] for the definition of weak convergence. 
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SIR W 
,(L) 

v + Z^P^WSi) 
(2) 

Note that the received SIR's are random variables un- 
der our assumption. Therefore, we adopt a probabilistic 
model for the users' QoS requirements as follows (cf., 
[9]): 

P{SIR[L) > 7} > a, k=l,...,M, 

where a £ [0,1]. In the following sections, we will focus 
on the cases where a < 1 since our work is mainly for 
imperfect power-controlled systems. 

3.1    Admissibility and Network Capacity 

Since the Ffc
( ''s are i.i.d. and the Wki's are i.i.d., the 

received SIR's are also identically distributed. Hence, 
P{SIRf. > 7} does not depend on k. We study user 1 
without loss of generality. 

Given the distribution of the received powers, we de- 
fine admissibility for a class of users with random signa- 
tures as follows: when the processing gain is L, ß users 
per degree of freedom of the processing gain are admis- 
sible in the system if 

P{SIR[
L)
 > 7} > (3) 

We say that ß users per degree of freedom of the pro- 
cessing gain are asymptotically admissible if 

lim P{SIR[
L)
 > 7} > a. 

£-»00     l        1     - u - (4) 

Before we examine the asymptotical admissibility, 

we define AM = &££2töW - »{L))$ and BM = 

iiT!L2(i^L\ where fc = ^£f=1 WUWU. Then (2) 
boils down to 

SIR[
L)

   = 
>(£) 

v + EfL.P^is^s^ 
Pi 

ij + ß(BM + AM)' (5) 

We have the following lemma on the limits of AM and 
BM- 

Lemma 3.1 When the processing gain L goes to infin- 
ity, AM converges to 0 and BM converges to p, almost 
surely. 

Due to space limitations, we omit the proof of 
Lemma 3.1 in this conference version (the proof can be 
found in the full version of this paper [16]). Lemma 3.1 
will be used in the proofs of Proposition 3.1 and The- 
orem 3.1.    Alternatively, Proposition 3.1 can also be 

proved by applying [10, Proposition 3.3], but the proof 
would be more involved. Moreover, if we keep the re- 
ceived power profile of each user the same when L —>■ 00, 
as is the case in [10], we can obtain by using Lemma 3.1 
that each user's SIR converges almost surely, which is a 
stronger result than what can be obtained based on [10, 
Proposition 3.3]. 

Define F~l(y) = inf{P0 : F(P0) > y}. Since F is 
continuous, F(P0) < y if and only if P0 < F~1(y). We 
have the following proposition on the asymptotical ad- 
missibility. 

Proposition 3.1 Suppose each user chooses its signa- 
ture sequence randomly and independently. Then ß users 
per degree of freedom of the processing gain are asymp- 

totically admissible if and only if ß < 

Proof: By Lemma 3.1, we have2 

lllz«! 
7/1 

SIR\ (L)     V 

v + ßv' (6) 

Since P0 is a random variable with a density function, 
we have 

P{PO = l{T) + ßll)}=0. 

Appealing to [1, Theorem 2.1], we get 

lim P{SIR[
L)
 > 7}    =    P { lim SIR[

L)
 > 7} 

=    P{Po>l(ß» + v)}- 

Hence we have 

lim P{SIR[
L)
 > 7} > a 

L—yoo 

P{Po>j{ßn+r])}>a 

F(j(ßß + v)) < 1 - a 

F-^l-a)      V 
7// n' 

completing the proof. 

&    ß< (7) 

D 

Following the line of reasoning in [10], we call ü_£i _ 
^ the network capacity in the limiting regime for the 
given received power distribution. 

In practical CDMA systems, the processing gain is fi- 
nite and large. For example, IS-95 utilizes a bandwidth 
of slightly less than 1.25 MHz and the processing gain 
equals 128. For third generation CDMA systems, it has 
been proposed to use a bandwidth of 5 MHz to offer high 
quality voice and medium rate data. It is reasonable to 
expect even larger processing gains for third generation 
CDMA systems. Therefore, one basic question to ask 
is, "How many users are admissible for large (but finite) 
processing gains while the QoS requirements are fixed?" 

2The notation ==> is used to denote convergence in distribution. 



Based only on Proposition 3.1, however, we cannot an- 
swer this question, motivating us to develop another ap- 
proach that studies a sequence of network capacities in- 
dexed by the processing gain L. We proceed to elaborate 
on this approach. 

We define the network capacity when the processing 
gain is L as the maximum number of users (per degree 
of freedom of the processing gain) that are admissible in 
the system. That is, 

ßL(a) = sup j/? P{SIR[
L)
 > 7}>a} 

^oo(a) as the 
(a)   = 

We define asymptotic network capacity /?, 
limit of PL{O.) when L ->• oo, that is, 

limL_yoo/?z,(a)- 
For technical reasons, we assume that the received 

powers in the limiting regime have a connected support 
and hence F is strictly increasing over its support. Our 
main result is stated as follows: 

Theorem 3.1 Suppose   users   choose  their signatures 
randomly and independently.   Then the asymptotic net- 

7M ß' work capacity is /?oo(a) 

The proof of Theorem 3.1 is rather technical. Again, 
due to space limitations, we will not present the proof 
of Theorem 3.1 here (the proof can be found in the full 
version of this paper [16]). 

It turns out that the network capacity in the limiting 
regime and the asymptotic network capacity, which are 
different in principle, lead to the same result under the 
auxiliary assumption above. In general, the network ca- 
pacity in the limiting regime is an upper bound on the 
asymptotic network capacity. The asymptotic network 
capacity, however, is a more appropriate approximation 
of the network capacity of a large network. In partic- 
ular, by exploiting Theorem 3.1, we can conclude that 
for a given e > 0, ßoo{a) - e users per degree of freedom 
of the processing gain are admissible in the system with 
sufficiently large L (i.e., L > L0(c) for some L0(e)). 

Theorem 3.1 establishes the fact that the network ca- 
pacity can be expressed uniquely in terms of the users' 
QoS requirements and the received power distribution. 
Figure 2 shows some plots of the network capacity as a 
function of the desired SIR. In this example, we assume 
that the received powers have a log-normal distribution, 
that is, we take P0 = T10^, where f is some constant 
and £ has mean zero and standard deviation a = 1.7. 
Strictly speaking, we should have modeled the received 
power with a truncated version of the log-normal dis- 
tribution by our assumption. However, the difference is 
insignificant and results in unnecessary increase of the 
computation complexity. 
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Figure 2: Network capacity vs. desired SIR 

Power Control and Effective Target 
SIR 

We have studied the admissibility and network capacity 
for single-class systems assuming known distribution of 
the received powers. On the other hand, one fundamen- 
tal question to ask is, "How many users (per degree of 
freedom of processing gain) can be made asymptotically 
admissible through power control for given QoS require- 
ments?" We study this problem in the high signal-to- 
noise ratio region (when the background noise power n 
goes to 0, as in [12]). Loosely speaking, the above prob- 
lem can be regarded as the dual of the near-far resis- 
tance problem for the matched filter receiver in the fol- 
lowing sense: on one hand, near-far resistance concerns 
the worse-case performance; on the other hand, optimum 
power-controlled capacity concerns the best-case perfor- 
mance. 

Define 
ßd = sup lim /?oo (a). 

F()'»-+0 

The calculation of ßd boils down to finding the supre- 
mum of the ratio of F_1(l - a) to p,F over all possible 
distributions of received powers, where p,F is the corre- 
sponding mean of a distribution function F. (Note that, 
a priori, fip can be any positive number.) It is straight- 
forward to get 

sup 
F() 

F-^l-a) 
(iF 

(8) 

and the supremum is achieved by any distribution of the 
form as shown in Figure 3. Hence, ßd = ±. Further- 
more, for a given distribution function F having the form 
in Figure 3, it is easy to construct a sequence of continu- 
ous distribution functions that converge pointwise to F. 
For example, it is easy to show that {Hn} defined below 



F(x) 

1 

1-a 

Figure 3 

supremum of 

F (1-a) 

A distribution function  that  achieves  the 
F-'q-q) 

VF 

converges pointwise to F: 

Hn(x) = I 

0 x <0 
1-a 0 <x < b 

1 — a + na(x — b) b < x < b + — 

1 *>*+£, 
where b — F  x(l — a). Moreover, we have 

H^{1- a) _ 1 
lim 

n—>-oo »Hn 

Therefore, there exists a distribution function for which 
ß users (per degree of freedom) are admissible if and only 

ifß<ßd- 
Observe that the optimal power control is in the form 

of "bang-bang" control. To provide more insight into 
why the distribution function F given in Figure 3 is opti- 
mal in the sense of maximizing the capacity, we have the 
following heuristic and interesting interpretation. Sup- 
pose the number of users (per degree of freedom) is less 
than (and close to) ßd- Since the QoS requirement is that 
P{SIR(

L
^ > 7} > a, we implement power control such 

that the received SIR of each user is greater than (and 
close to) 7 with probability a and equals 0 with proba- 
bility 1 — a. That is, very little power is wasted, which 
is equivalent to saying that the power control is efficient. 
When a < 1, perfect power control is no longer the best 
in this context by the above observations. The reason lies 
in the fact that we loosen the users' QoS requirements. 
When a = 1, the optimum power control strategy is 
perfect power control, and ßd = ^ which agrees with 

the expression given in [10]. (Let P denote the received 
power under the perfect power control scheme; we take 

F~1[0) = P.) 
We proceed to look for an abstraction that combines 

the information of both QoS requirements and received 
power distributions for determining the asymptotic ad- 
missibility and characterizing the network capacity for 
single-class systems. 

Note that if ß users are not asymptotically admissible 
for a given received power distribution, it may still be 
possible to make ß asymptotically admissible by scaling 
up the received power. Referring to the definition of 
scale family in [2, p. 118], we consider the scale family 
Q = {F(^),c > 0}, where F is the distribution function 
of PQ. Note that for any G\,G2 £ Q, G\ is a scaled 
version of G2, and vice versa. A very special (degenerate) 
example of the scale family is3 

G={Ft = I[tiOo):t>0}, 

which essentially represents the totality of distribution 
functions under perfect power control. 

Define 7' = 7ce, where ce = H-i/[-a)' H ^Q. An im- 
portant observation is that ce is fixed for the scale family 
Q. That is, ce is invariant over all the distributions in Q, 
and is a property of the whole scale family. Therefore, 
7' is also invariant over all the distributions in Q. We 
call 7' the effective target SIR for Q. For example, we 
have 7' = 07 for the scale family of distributions that 
have the form as shown in Figure 3. 

Note that in a given scale family of distributions, there 
exists a one-to-one correspondence between distribution 
and mean. We have the following proposition for a given 
scale family Q. 

Proposition 3.2 There exists a finite positive value 
that can be assigned as the mean such that ß users per 
degree of freedom of processing gain are asymptotically 
admissible for the corresponding received power distribu- 
tion in Q if and only if ßY < 1. Moreover, the minimum 
value for p,p is 

H = m 
ßi' (9) 

The proof of Proposition 3.2 follows directly from 
Proposition 3.1. Clearly, the effective target SIR plays 
an important role in determining the admissibility. For 
illustration, we show some plots of the effective target 
SIR as a function of the desired SIR in Figure 4. For sim- 
plicity, again we assume that the received powers have a 

log-normal distribution, that is, PQ = T10i°. Note that 
£ is due to the channel gain estimation error. Several ob- 
servations are worth noting. On one hand, the channel 
gain estimation has much impact on the effective target 
SIR, especially when a is large. The smaller the stan- 
dard deviation a of the channel gain estimation error, the 
smaller the slopes and hence the effective target SIR. On 
the other hand, it is desirable to reduce the desired SIR 
for fixed a as much as possible so that we can get a small 
effective target SIR. Sophisticated techniques of coding 
and modulation can be exploited to combat fading and 
increase the error correcting ability and hence reduce the 
effective target SIR. 

i I A denotes the indicator function of a set A. 
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Note that if ß users are asymptotically admissible for 
some distribution of the received power, then ß users are 
also'asymptotically admissible when we scale up the re- 
ceived power by any constant greater than 1. For exam- 
ple, let H denote the distribution function corresponding 
to the mean given in (9). An easy observation is that ß 
users are asymptotically admissible when we "scale up" 
H by any constant greater than 1 (i.e., for any distribu- 
tion function H'(p0) = H(p0/c), c > 1). 

4      Multiple-Class Systems 

We have studied the network capacity for single-class 
systems in the above section. However, future wireless 
systems will have to support multimedia services such as 
voice, data, video, and fax. Therefore, it is essential to 
have a level of generalization dealing with users having 
different QoS requirements. 

Suppose there are a fixed number, say N, of classes. 
Let An denote the set of users in class n and M„ the 
cardinality of An, n = 1,..., N. Let Sin denote the sig- 
nature for the ith user in class n. Define /?„ = ^ and let 
ßn be fixed when L goes to infinity as in the single-class 
case. 

Let P^ denote the received power for i G An and 
n = l,...,N when the processing gain is L. Then the 
received SIR for the ith user in class n is 

SIRW = 
>(i) 

v + i[L) + iiLV 
(10) 

where 

A —       2^/      <«    ''-''"'" > 

l€.4, 

-Öl-       \>~>ir>^>lj )     • 

Again our results are asymptotic in nature. For the 
sake of notational convenience, as in the single-class case, 
we let Pn denote a random variable that has the same 
distribution Fn as the received powers of the users in 
class n in the limiting regime, and assume that Fn has 
a density function and mean fin. For convenience, we 
call the collection {F\,..., F^} a group of received power- 
distributions, and P = (//i,.. -,^N)

T
 the mean power 

vector. Suppose it is required that the users in class 
n have received SIR greater than or equal to fn with 
probability no less than an £ [0,1]. 

Similar to the approach in the single-class case, we 
obtain 

?(L) _z>   _        Pn 
SIR). ^N 11) 

V + En=l ßrißn 

Therefore, we study the first user in class n without loss 
of generality. 

4.1    Admissibility and Network Capacity 
Region 

Given a group of received power distributions, we say 
a tuple (ßi,..., ßtj) is asymptotically admissible if the 
following condition holds: 

lim P{SIR[L
n
]>~j}>an, 

L-YOO 
1,...,VV. 

We define the network capacity region to be the set of 
all tuples that are asymptotically admissible. 

We have the following proposition on the network ca- 
pacity region of multiple-class systems for the given dis- 
tribution of the received powers. 

Proposition 4.1   Under the choice of random signa- 
tures, the network capacity region is given by 

l (ßi,...,ßN) : X>»^" ^ m„in (F"   (1~Qn) ) _ V 

n = l 
In 

Proof: Since Pn has a density function, we get by ap- 
plying [1, Theorem 2.1], 

lim P{SIR[L
n
] > 7}    =    P{ um SIR^ > 7) 

A Pn 
L-»oo 

^N 
V+Hn = lßnLln 

>7 

l€A„ 

By definition, a tuple (ßi,...,ßN) is asymptotically 
admissible if and only if for n — 1,..., N, 

lim PiSmff >f}>an. 
L-¥oo 



Thus, we have for n = 1, . . ., N, 

-.(L) lim P{SIR\„> > 7} > an 
L—tco 

N 

«•      P{Pn >7fa+^ &/*«)}>«" 
n = l 

AT 

n = l 

which is equivalent to 

N 

EßnUn < min 
n 

n = l 

In 

^n    (1-Gn) 

7n 

Then the desired result follows. 

(12) 

D 

4.2    Power Control, Effective Target SIR, 
and Effective Bandwidth 

As in the single-class case, we introduce the scale fam- 
ily Qn = {jFn(^!-),c > 0}, where F„ is the distribution 
function of Pn, n = 1,.. .,N. Define j'n = jncen, where 

:> Gn (zGn- Note that cen is fixed for the 

scale family Qn. We call -y'n the effective target SIR for 
Gn- For convenience, we call the collection {Gi,..., GN} 

a group of scale families. Then we have by straightfor- 
ward manipulations of (12), 

N 

Pn ^IniV + ^ßrifln] n = l,...,N. (13) 

Let f = (7i,._. .,iN)T, and 0 = (ft, ...,ßN)T. Using 
the above notation, (13) boils down to 

ai p>ß1pr + 7?r. (14) 

We want to study the feasibility of (14), that is, the 

condition under which there exist positive vectors Pi sat- 
isfying (14). Based on [8, 9], we draw the conclusion that 
a necessary and sufficient condition for the existence of a 
finite positive solution to (14) is the existence of a finite 
positive solution to the system of equations obtained by 
setting all inequalities in (14) to equalities. More specif- 
ically, we have the following lemma. 

Lemma 4.1   There exists a finite positive vector P sat- 
isfying (14) if and only if the following condition holds: 

N 

J>n7;<i- (15) 
n = l 

Moreover,   the n-th component of the component-wise 
minimum mean power vector satisfying (14) is 

Pn = 
Tn 
^A^ 

i-E„=iW 
n = l,...,N. (16) 

Proof: Observe that Tß is a non-negative irreducible 
matrix and has rank one. Thus, the Perron-Frobenius 

eigenvalue of TßT is ßTT. Appealing to [8, Proposi- 
tion 2.1], we have that a necessary and sufficient condi- 
tion for the existence of a non-negative nonzero solution 
to (14) is 

AT 

$>;/?n<i. 

Define 

P* = (I-Tß fir 
vr. 

Then the solution P* is Pareto optimal in the following 
sense: any other feasible solution to (14) will have every 
component not less and at least one component greater 
than the solution P*. 

It is easy to obtain that P* 
i-/3Tr r. Therefore, we 

obtain that the n-th component of the component-wise 
minimum mean power vector is 

Pn - 
Tin 
^N 

i-£„=iÄ>7; 
D 

Observe that in a given group of scale families, there 
exists a one-to-one correspondence between the mean 
power vector and the group of received power distri- 
butions. Based on Lemma 4.1, we can easily obtain 
the following result for a given group of scale families 

{Gi, ■ ■ -,GN}- 

Proposition 4.2 There exists a finite positive vector 
that can be assigned as the mean power vector for a tu- 
ple (/?!,.. .,ßN) to be asymptotically admissible for the 
corresponding group of received power distributions in 
{Gi, ■ • •, GN} if and only if 

N 

£«<!• 
n = l 

Moreover,   the n-th component of the component-wise 
minimum mean power vector is 

Pn = 
Tn 

Zjn = l ßnln 
1, ,N. 

The proof of Proposition 4.2 follows by combining the 
results of Lemma 4.1 and Proposition 4.1. Observing the 
conditions given in Proposition 4.2, we are motivated to 
extend the insightful idea in [10] and define the effective 
bandwidth of class n as £(7«) = Yn degrees of freedom 
per user. Proposition 4.2 tells us that for a given group of 
scale families, a tuple (ft,..., ftv) can be made asymp- 
totically admissible through power control if and only if 
the sum of effective bandwidth of all classes is less than 
one. 



It is easily observed that the smaller the effective 
target SIR, the smaller the effective bandwidth. Un- 
der the optimum power control obtained in the single- 
class case,  the condition given in  (15) boils down to 

^N 
E„ = l/?"a«7n < 1- 

5    Conclusions 

We study a single-cell synchronous CDMA system with 
the matched filter receiver in fading channels, and iden- 
tify the network capacity for single-class systems and 
the network capacity region for multiple-class systems 
assuming known distributions of received powers of mo- 
bile users. Both the network capacity and network ca- 
pacity region can be uniquely expressed in terms of the 
users' QoS requirements and the distributions of the re- 
ceived powers. For given scale families of distributions 
of received powers, we give necessary and sufficient con- 
ditions for asymptotic admissibility in terms of effective 
bandwidth for both single-class systems and multiple- 
class systems. We also find the tightest upper bound 
of the network capacity over all possible distributions 
of received powers. Our results are useful for network- 
level resource allocation problems such as admission con- 
trol and power control in a large network. Further- 
more, although we have confined ourselves to the systems 
with the matched filter receiver, we believe that our re- 
sults can be extended to the systems equipped with the 
MMSE (minimum mean square error) receiver. 

In this paper we have focused on characterizing the 
network capacity so that we can determine how many 
users can be accommodated without sacrificing their 
QoS requirements. On the other hand, another fun- 
damental issue is the channel capacity. That is, how 
much information can be transmitted reliably through 
the fading channels? Currently we are looking into this 
problem. 
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Abstract 

Due to the fast-growing demand for network capacity in wireless networks, the 

characterization of network capacity has become a fundamental and pressing issue. 

While there have been considerable efforts on CDMA systems at both the physical 

layer and network layer, the network capacity of imperfect power-controlled CDMA 

systems with linear receivers in fading environments are less well-understood. In this 

paper, we study a single-cell synchronous CDMA system with matched filter receivers, 

assuming known distributions of received powers. We find necessary and sufficient 

conditions" on the admissibility for both single class and multiple class systems with 

random signatures. For systems with deterministic signatures, we give a necessary and 

sufficient condition on the admissibility for single class systems, but only a sufficient 

condition for multiple class systems. We also identify the network capacity of single 

class systems for both the random signature case and the deterministic signature case. 

The network capacity can be uniquely expressed in terms of the users' QoS requirements 

and the distributions of the received powers. We find the tightest upper bound on the 

network capacity over all possible distributions of received powers, and explore the 

concepts of effective target SIR and effective bandwidth, which play an important role 

in determining the admissibility and hence the network capacity. 

Index Terms: CDMA, Matched Filter, Deterministic Signature, Random Signature, 

Admissibility, Network Capacity, Power Control, Fading Channel, Scale Family. 
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1    Introduction 

Wireless networks have drawn a great deal of attention in the past decade. Due to the 

fast-growing demand for network capacity in wireless networks, it is essential to utilize ef- 

ficiently the limited resources in fading channels. The characterization of network capacity 

is therefore a fundamental and pressing issue in wireless network research. In this work, we 

consider a model for the uplink of a single-cell synchronous CDMA system in fading channels. 

The network therein consists of numerous mobile subscribers communicating with one base 

station, which is typically interconnected to a backbone network via a wired infrastructure. 

Much of the previous research on CDMA systems has been restricted to the physical layer 

[12, 13, 14, 19, 26] (see [25] for a survey of the literature). Lupas and Verdü [12] considered 

linear multiuser receivers that can achieve performance similar to optimal multiuser detector. 

Madhow and Honig [13] presented and analyzed minimum mean squared error (MMSE) 

interference suppression schemes. Roughly speaking, the main principle,in designing these 

receivers is to project the signature of the desired user onto the subspace which is orthogonal 

to that spanned by the signatures of the interferers. In more recent work [14], Madhow and 

Honig further studied the performance of a finite complexity MMSE linear detector for 

demodulating DS-CDMA signals. These works focus mainly on the performance of linear 

receivers in worst-case scenarios, and near-far resistance and asymptotic efficiency have been 

studied as two important performance measures. 

At the network level, there have been considerable efforts on power control [6, 8, 24, 

31]. Yates [31] provided a framework for understanding the issue of convergence of some 

deterministic power control algorithms. A generalization by Ulukus and Yates to stochastic 

power control algorithm can be found in [24]. In [8], Hanly introduced macrodiversity, 

derived the capacity region for the uplink of a radio network, and proposed a decentralized 

power adaptation algorithm. 

Unlike in TDMA and FDMA systems, there is no clean separation between resource al- 

location at the physical layer and network layer in CDMA systems. Since the sophisticated 

techniques for allocating network resources at both the physical layer and network layer aim 

at improving network capacity, it is natural to ask how linear receivers perform in power 

controlled systems. In [23], Tse and Hanly characterized network capacity for several impor- 

tant receivers via a notion of effective bandwidth, assuming users have random signatures. In 

[27], Viswanath, Anantharam, and Tse studied the joint optimization problem of designing 

the multiuser receiver structure, power control, and spreading sequences, and obtained sim- 

ple characterizations of the resulting network capacity in various scenarios. However, both 



[23] and [27] assumed perfect power control in characterizing network capacity. In a prac- 

tical wireless communication system, multipath fading is ubiquitous, making perfect power 

control impossible. However, little work has been done on network capacity of imperfect 

power-controlled CDMA systems with linear receivers in fading channels. 

In this paper, we study the admissibility and network capacity of imperfect power- 

controlled CDMA systems with matched filter receivers in fading channels. Each user in 

the system is assigned a signature onto which the user's information symbols are spread. 

Every user also has a minimum signal-to-interference (SIR) requirement. Roughly speaking, 

a set of users is said to be admissible if their simultaneous transmission does not result in 

violation of any of their SIR requirements; the network capacity is the maximum number 

of admissible users. Following the approach of [23, 26], we formulate the problem in an 

asymptotic setting in which we allow the number of users M and the degrees of freedom L 

(length of the signature) to grow, while keeping their ratio fixed. The results are stated in 

terms of this ratio of number of users per degree of freedom. A feature that distinguishes 

this work from [23] is that the received power for each user in our model are random. The 

SIR requirements in our setting are also therefore probabilistic, unlike that of [23]. 

We treat separately systems with single class of users and systems with multiple classes 

of users. In each case, we consider both deterministic and random signatures. For the 

random signature case, we provide necessary and sufficient conditions, in both single class 

and multiple class systems, for a set of users per degree of freedom to be admissible. For the 

deterministic signature case, we provide a necessary and sufficient condition for admissibility 

in single class systems, but only a sufficient condition for multiple class systems. For single 

class systems, we also calculate the network capacity. The analysis in the deterministic 

signature case involves WBE sequences and inequalities, using results of [15], as in [27] (note 

that the results in [27] apply only to the perfect power control case). 

The organization of the rest of this paper is as follows. In Section 2 we give some pre- 

liminaries for our model of an imperfect power-controlled CDMA system in fading channels. 

In Section 3, we study admissibility and identify network capacity for users of a single class. 

We also address some issues on power control and define the concept of effective target SIR. 

In Section 4, we extend the study to users of multiple classes, and define effective bandwidth 

for imperfect power-controlled CDMA systems in fading channels. Finally, we draw some 

conclusions in Section 5. 



2    Preliminaries 

Suppose users transmit data over a fading channel. Typically, fading channel gains are 

assumed to be stationary and ergodic, and all the users in one class are assumed to have 

independently and identically distributed channel gains (see [7, 10]). The above assumption 

is very reasonable since interleaving and de-interleaving are usually employed in practical 

systems. As pointed out in [6] and [23], it is ideal to have the received powers for all the users 

in one class to be the same all the time. However, it is very difficult to implement perfect 

power control and the received powers fluctuate around the desired levels in a practical 

system. Assuming that all the users in one class experience independently and identically 

distributed channel gains and the same kind of power control algorithm is applied to all 

users in one class, by symmetry, we model the received powers for all users in one class to 

be independently and identically distributed in a large network. For technical reasons, we 

also assume that power control is good enough to ensure that the fluctuation around the 

expected received power is bounded (say by d) with probability one. 

We assume that the distributions of the received powers are known. This assumption is 

reasonable (cf., [9, Chapter 6]). From a practical viewpoint, the distributions of the received 

powers can usually be obtained through measurements (see [17]). It is worth pointing out 

that the constraints on the power such as peak power constraint or average power constraint 

can easily be taken into account in the above assumptions on the received powers. 

We aim to study the admissibility and network capacity in the limiting regime, that is, 

when both M and L go to infinity. As in [23], ß — ^r is taken to be fixed as L goes to 

infinity since it is very reasonable to keep the number of users per degree of freedom fixed 

while scaling up the processing gain L. In fact, we only need lim^oo ^- = ß; however, it is 

more convenient to fix the ratio in the following discussion. 

In a synchronous CDMA system, each user, say user k, is assigned a binary (±1 valued) 

signature of length L, Sk = 77r(Wki, • • •, WUL)
T

 ■, where Wki is either 1 or — 1 for i = 1,..., L. 

The user's information symbols are spread onto its signature. There are several methods 

to spread the information symbols onto the signature (see [16]). One method is to alter 

directly the information symbols by modulo-2 addition with the signature. Another way is 

to multiply the information symbols with the signature. For purposes of demodulation, it 

is convenient to adopt the second approach. We will study the admissibility and network 

capacity for the following two cases. The first is the deterministic signature case, by which 

we mean that the users' signatures are jointly designed and deterministic when they are 

admitted into the system (see e.g. [15, 27]); the second is the random signature case, by 
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Figure 1: A simplified block diagram of the uplink of a CDMA system with matched filter 

receiver 

which we mean that users choose their signatures randomly and independently when they 

are admitted into the system, which models the situation where the information symbols are 

spread onto pseudo-random spreading sequences (see e.g. [23, 26]). 

Our main results make use of the following lemma [4, Lemma 2.4], which is a strong law 

for triangular arrays: 

Lemma 2.1 Let Xin,i = 1,..., n; n = 1,2,... be a triangular array of random variables 

defined on a common probability space such that for each n, {Xin,i - 1,..., n] are indepen- 

dent, and let Sn = £"=1 Xin. If f- -> 0 in probability and 

£ 
t=i 

Xfjogn 
n' 

-» 0   a.s., 

then — —> 0 almost surely. 

3    Single Class Systems 

Figure 1 depicts a simplified block diagram of the uplink of a CDMA system with matched 

filter receiver. Since our purpose is not to evaluate or optimize modulation performance, for 

simplicity, we assume the modulation is antipodal, that is, hk £ {-1,1}. This assumption is 

not crucial, but it simplifies the analysis. Based on [23, 24], we have the following discrete- 

time model for the uplink of a synchronous CDMA system. Suppose there are M users in 

the system when the processing gain is L. For any symbol interval, the baseband received 



signal at the front of the receiver is 

M 
Y = E yp^hSk + v, (i) 

fc=i 

where the b^s are the transmitted information symbols and the P^ J's are received powers 

for k = 1,..., M, and V is A/"(0, rjl) background noise that comes from the sampling of the 

ambient white Gaussian noise with power spectral density rj = ^-. (We assume throughout 

that j] > 0.) The received powers are assumed to be i.i.d. with distribution FL, which has 

a density function and mean ^L\ When L goes to infinity, we assume that the sequence 

of functions {FL} converges weakly to F (see [1] for the definition of weak convergence), 

which denotes the distribution of the received powers in the limiting regime. Let PQ denote 

a random variable that has distribution F and mean /i. We assume that lim^oo (JS
L

^ = //. 

Assume the signature Sk of user k is known to the receiver for it. Then the received SIR 

(signal-to-interference ratio) for user k after passing the matched filter is (cf., [13, 23]) 

SIR[L) = whn  k = l,...,M. (2) 
»j + E&ifte)2 

I7<fc 

Note that the received SIRs are random variables under our assumption. (See [28] for a 

plot of the received SIRs distributions based on the San Diego Tests.) Therefore, we adopt 

a probabilistic model for the users' QoS requirements as follows: 

P{SIRP > 7} > a, k = l,...,M. 

We justify this model as follows: first, since the received SIRs depend on power control 

(which could be adaptive) and the status of the fading channels, it is difficult to derive a 

general one-to-one mapping between the average SIR and BER (bit error rate) for either 

coherent or noncoherent reception. Second, although much research on power control has 

done snapshot analysis assuming that the objective is to drive all SIR values above a given 

target SIR, as pointed out in [17], most often the favorite conditions for the foundation of 

the above approach do not hold true, making the analysis inappropriate. Furthermore, as in 

[20, 23], we are interested in the more general problem of extracting good estimates of the 

symbols of each user for soft decisions. Hence, it is sensible to adopt the above probabilistic 

model for the users' QoS requirements. 

In the following sections, we will focus on the cases where a < 1 since our results are 

mainly for imperfect power-controlled systems. 



3.1    The Deterministic Signature Case 

In this case, the users' signatures are deterministic, and the signatures of all the M users 

form a signature set when the processing gain is L. As L goes to infinity, we have a sequence 

of signature sets. Let T denote the collection of sequences of signature sets satisfying the 

following condition: 

sup (SfSj)2 log L -+ 0 as L ^ co, (3) 
i,j<M 

where S; and Sj are the signatures for user i and j respectively when the processing gain is 

£; {j e {1,..., M}. Intuitively, for any sequence of signature sets not satisfying (3), there 

exist at least two users whose signatures are heavily correlated in a large network, which is 

not desirable since statistical multiplexing is an advantage of spread spectrum systems when 

the received powers fluctuate because of fading environments, and low cross-correlation is 

essential for statistical multiplexing [9]. 

In the following sections where sequences of deterministic signature sets are chosen, we 

confine ourselves to sequences in T. 

3.1.1    Asymptotic Admissibility 

We define admissibility for a class of users as follows: when the processing gain is L, ß users 

per degree of freedom of the processing gain are admissible in the system if and only if there 

exists a signature set {Si,..., SM} for the M users, where M equals ßL, and the users' QoS 

requirements are satisfied when {Si,..., SM} are assigned to the users, that is, 

P{SIR{L) > 7} > a,     Vfc=l,...,M, 

which is equivalent to 

max    minP{S/ßiI')>7}>«- (4) 
{Si,...,SM}    * 

Asymptotic admissibility is defined as follows: we say ß users per degree of freedom of the 

processing gain are asymptotically admissible if the following condition holds: 

               ii ruir 
L-»-oo {SI,...,SM}     k 
lim     max    min P{SIR[

L)
 > 7} > a. 

To study the issue of asymptotic admissibility, we need some intermediate results.  For 

ease of later reference, let FM denote the signature set {Si,..., SM}, and define 

M 

AM(FM,fc) = ^(^(L)-^(L))(SrSt)
2, 

■V* 



BM{FM, k) = 2_j(Sk Si) \x 

M 

1=1 

First we study the limits of AM(FM,k) and BM(FM,k). As pointed out in [27], when 

M < L we can always choose an orthogonal signature set so that AM{FM, k) = 0 and 

Biw(FM,k) = 0. Then each single user transmits data as if it were in a single-user chan- 

nel. This case is not of real interest since we want to find the maximum number of users 

supportable by the system. For the case M > L, our results make use of WBE (Welch 

Bound Equality) signature sets. Massey and Mittelholzer [15] define the binary sequences 

Si,..., SM of length L with unit norm satisfying the following equality as WBE sequence 

set: 
M   M 2 

t'=l i=l 

We use the terminology "signature set" instead of "sequence set" to avoid confusion since 

we will discuss sequences of such sets. 

For any sequence of signature sets {FM}, if limjr,_>.00 max^ J2j=i(^k^jY iS no^ finite, 

then limL-s-oo minyt P{SIRk ' > 7} = 0, which implies at least one user cannot have its 

QoS requirements satisfied. Therefore, we assume lim^oo max^ ^2j=1(SkSj)2 < 00 in the 

proceeding discussion. 

Lemma 3.1 a). For any sequence {FM} in T, lim^oo AM(FM, k) = 0 almost surely when 

lim^oo maxyt][\=i('S,J'Sj)2 < 00; 

b). liniL->.oo BM(FM, k) > (ß — 1)/J, almost surely when ß > 1, and equality is achieved by 

a sequence of WBE signature sets. 

Proof: See Appendix A. ü 

We define F~1(y) = inf{P0 : F(P0) > y}. Since F is continuous, F(P0) < y if and only 

if PQ < F~1(y). Then we have the following result on the asymptotic admissibility for the 

deterministic signature case. 

Theorem 3.1  Suppose all sequences of deterministic signature sets are chosen from T. 

Then ß users per degree of freedom of the processing gain are asymptotically admissible if 

and only if ß < F~'7
(*~a) + 1 - J. 

Proof: Since lim^oo max^ ^j=1(Sk Sj)2 < 00, we have by Lemma 3.1, 

lim (AM(FM, k) + BM(FM, k)) = lim BM{FM, k). 
L—too L—too 



By assumption, the received power of every user in the limiting regime has same distribution 

as P0. Hence, by Slutsky's Theorem [2, Theorem 5.3.5], 

SIR(L) ^  ^ . 
* limL-Kx, BM{FM-, k) + ri 

where the notation ==> is used to denote convergence in distribution. Since P0 is a random 

variable with a density function, it is easy to get 

„ r Po 7=0. 
\ t] + limL_>oo BM(FM, k) 

Then, we have by [1, Theorem 2.1], 

lim P{SIR{
k
L) > 7} = P ( —T \   (F    h, > T) • (5) 

Let FM - {S{, • ■ •, S*M} and k*M denote a signature set and a corresponding index under 

which (4) achieves the'max-min point, that is, 

max    mmP{SIRk
L)>i} = P{SIRk?>1}, 

{Si,...,SM}    k 

where FM is implicitly employed for the right side. / 

Observe that the sequence of the signature sets {FM} also satisfies the condition in"(3), 

that is, 

lim suV((S*k)
TS*)2 log L = 0. 

Clearly, lim^maxi Ef=i((S*k)TSjY < °°- Based on (5)' we aPP^ Lemma ;U and §et 

lim     max    mm P{S I R{
k
L) > 7}   =   P\ -—p h~7W~k^\ - 7 f 

<    P{P0>l{{ß- IV + '?)}• (6) 

It suffices for {FM} to be optimal if it achieves the equality in (6). By Lemma 3.1, the 

equality in (6) holds if {FM} is a sequence of WBE signature sets in 'F. Therefore, under 

the choice of a sequence of WBE signature sets {FM} in T, we ha\ we 

SIB,™ =Z> Po     N as L -y 00. 

Since Po has a density function, we obtain P{P0 = -y[{ß - 1)(* + v\\ = 0-   We Set bY 

applying [1, Theorem 2.1] again, 

lim P{SIR[L) > 7}   =   P { I™ SIR[
L)
 > 7} 

=   P{Po>7((ß-l)v + r])}' (7) 



Hence we have 

lim P{SIR[L) > 7} > a   <*   P{P0 > 7((/? - l)/i + ??)} > a 
L—¥00 

« 0<P-^-') + 1.1. (8) 
Iß P 

That is, if ß users per degree of freedom of the processing gain are asymptotically admissible, 

then ß < F"1(1"s) + 1 - a. On the other hand, for any ß < F~'(1~a) + l - a we can 

always choose a sequence of WBE signature sets to make it asymptotically admissible. This 

completes the proof. D 

Theorem 3.1 illustrates the fact that the asymptotically admissible region is 

ß < —' ~a> -f 1 — ^. Following the line of reasoning in [23], we can call —' ~a' + 1 — - 

the network capacity in the limiting regime (to be distinguishable from the concept "asymp- 

totic network capacity" which, is introduced below) for the given distribution of the received 

powers. 

In practical CDMA systems, the processing gain is finite and large. For example, IS-95 

utilizes a bandwidth of slightly less than 1.25 MHz and the processing gain equals 128. 

For third generation CDMA systems, it has been proposed to use a bandwidth of 5 MHz 

to offer high quality voice and medium rate data. It is reasonable to expect much larger 

processing gains for third generation CDMA systems. Therefore, one basic question to ask 

is "How many users are admissible for large (but finite) processing gains while the users' 

QoS requirements are fixed?" Based only on Theorem 3.1, however, we cannot answer this 

interesting question. (The subtlety will be more clear in the next section.) This motivates 

us to develop another approach that studies a sequence of network capacity indexed by the 

processing gain L. We elaborate on this idea in detail in the following section. 

3.1.2    Asymptotic Network Capacity 

We let CL denote the set of all the admissible points when the processing gain is L, that is, 

CL = \ß      max    mmP{SIR[L) >i}>a\. 
t       {Si,---,SM}    k J 

Of particular interest is the maximum number of users admissible by the system, which is 

defined to be the network capacity in terms of the number of users per degree of freedom 

of the processing gain. That is, the network capacity is the maximum number of users (per 

degree of freedom of the processing gain) that are admissible in the system, and depends on 
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a. Therefore, when the processing gain is L, we can define network capacity as follows: 

ßL(a) = sup CL = sup <^ ß max    min P{SIR[
L)
 > 7} > a 1 

{Si,...,SM}    k J 
(9) 

The asymptotic network capacity ßoo{a) is defined as the limit of ßL(a) when L ->• 00, 

that is, /?co(a) = limL_>TO /?L(a). Note that the network capacity in the limiting regime and 

the asymptotic network capacity are different in principle (compare the two definitions). A 

priori, we do not know if they lead to the same expression or not. (It is worth pointing out 

that our approach for asymptotic network capacity is independent from Theorem 3.1 and 

self-contained. It could have been presented before the section on asymptotic admissibility.) 

We aim to identify the asymptotic network capacity. For technical reasons, we assume 

the received powers in the limiting regime have a connected support, which implies that the 

distribution function F is strictly increasing over its support. We have the following lemma. 

Lemma 3.2 Suppose /„ : R -> [0,1], n = 1,2,..., are continuous and non-increasing. As- 

sume the sequence {fn} converges point-wise to f which is continuous and strictly decreasing. 

Define an(a) = sup{x\fn(x) > a}. Then we have ]ixan^00 an(a) = /_1(a); where f~l is the 

inverse mapping of f. 

Proof: See Appendix A. D 

Based on Lemma 3.1 and Lemma 3.2, we have the following result on the asymptotic 

network capacity for the deterministic signature case. 

Theorem 3.2 Suppose all sequences of deterministic signature sets are chosen from T. 

Then the asymptotic network capacity is ß^a) = F~!^~tt) + 1 - \, which can be achieved 

through a sequence of WBE signature sets in T. 

Proof: First we show ßj^a) is upper bounded by F ^~a> + 1 - J- 

By Lemma 3.1 we have lim^oo AM(FM,k) = 0 almost surely. Fix S > 0. By Egoroff's 

Theorem in [18], there exists a measurable set A such that P(A) < S and AM{FM,k) 

converges to 0 uniformly on A = fl\A. Therefore, fixing e > 0, there exists an integer L0 

such that for all L > L0, the quantity \AM{FM,k)\ is less than or equal to e for every point 

in A. 

Moreover, for any sequence {FM}, we have by (2), 

{SIR[L) > 7} = {PkL) > 7 [V + BM(FM,k) + AM{FM,k)}} . 
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Thus, for all L > Lo, 

P{SIR[L)>7}  =  P{(5/Äiz')>7)nA} + Jp{(^/ßiL)>7)nÄ} 

<  8 + P{(P{
k
L) > 7 [»7 + BM{FM, k) + AM(FM, k)]) n Ä} 

<   8 + TL{1{r, + BM{FM,k)-e)), (10) 

where FL(X) = 1 — FL(X). The function FL(-) is non-increasing and continuous since FL(-) 

is a cumulative distribution function with a density function. 

Define aL{a) — SUP{X\FL(X) > a} for any a G [0,1). By the definition of network 

capacity, P{SIR[ ' > 7} > a must be satisfied for all k — 1,..., M. Thus we have 

_,,,_,       .      öL(ö — 8) 
max JDM{J"M, k) < —^  — 77 + e. 

k 7 

Combining the above inequality with (38) in appendix A, we have 

A(.)<^(2i(lzi)-, + e) + 1. (11) 

Since FL converges point-wise to F, which is continuous and strictly increasing, FL converges 

point-wise to F, which is continuous and strictly decreasing. Then we have by Lemma 3.2, 

lim aL(a - 8) = F_1(l - a + 8). 
L—s-oo 

Since F is strictly increasing, and both e and 8 are arbitrary positive numbers, we conclude 

/U«) = lim ßL(a) < F"1(1~a) -2 + 1. 

Next we show that the upper bound is achievable through sequences of WBE signature 

sets in J-. 

Under the choice of WBE signature sets, we have P>M(FM, k) = (ßL — 1)/J^ for all 

k = 1,..., M, where ßi = j.m Then we have for all L > L0, 

P{SIR[
L)
 > 7} = P{(sm[L) > 7) n A] + P{(SIR[

L)
 > 7) n Ä} 

> P{(P(
k
L} >i[v + BM(FM, k) + AM(FM, k)]) n Ä} 

> P{(P{
k
L) >i\v + BM{FM, k) + c]) n Ä} 

> F£(l(ri + (ßL-l)fJ.lL) + e)) + P(Ä)-l 

> Flilti + (ßL - 1V(L) + e)) - 8. (12) 

For L > L0 and ßL < ^(°±te±*l - rj - e) + 1, we have 

7[(/?L - 1V(L) + V + e] < *L(a + 5), 
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which implies 

i^{7[(/?L-l)//L)+77 + e]}>a + <S. 

Combining the above inequality with (12), we can get for the chosen ßL, 

P{SIR[L) > 7} > a. 

Hence we have 

«•)£ ^> ( 

aL(a + S) 
- 77 - e    + 1. 

7 

Again we apply Lemma 3.2 and get 

ß^a) = lim ßL(a) >        (1 " a) - ^ + 1. 

Hence we have asymptotic network capacity ß^a) = 7
(*~o) + 1 - \. This completes 

the proof. a 

We have some final remarks on the above proof. The quantities ßh{o) are rational numbers 

by definition, but ßoo(a) is not necessarily a rational number. In order to get across the 

main ideas, we neglected this constraint in the proof of the achievability of the asymptotic 

network capacity. However, since rationals are dense on the real line, this approach does not 

affect the result on the asymptotic network capacity. 

It turns out that for the deterministic signature case, the network capacity in the limiting 

regime and the asymptotic network capacity, which are different in principle, lead to the 

same result under the auxiliary assumption made in this section. Certainly the result on the 

asymptotic network capacity is stronger than that of the network capacity in the limiting 

regime. Roughly speaking, by exploiting Theorem 3.2, we can conclude that for a given 

e > 0, ßoo(a) - e users per degree of freedom of the processing gain are admissible in the 

system for very large L (i.e., L > L0(e) for some L0(e)). 

Worth noting is that sequences of WBE signature sets in T play a very important role 

for both the asymptotic admissibility and asymptotic network capacity, A heuristic inter- 

pretation is that the choice of WBE signature sets is asymptotically optimal in the sense of 

suppressing the interference of all the users simultaneously. Another interesting observation 

is that the asymptotic network capacity A»(a) goes to 1 when 7 increases even in the high 

signal-to-noise ratio region (when the background noise power 77 goes to 0). In this case, the 

optimum choice of signature set is orthogonal signaling. 

WBE signature sets have great potential in spread spectrum systems (see, e.g. [15, 19]). 

Massey and Mittelholzer pointed out [15] that WBE signature sets enjoy an interesting 
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"uniformly good" property that the variance of the interuser interference experienced by a 

user is the same for all users under equal received power (normalized to 1) in a synchronous 

CDMA system. Rupf and Massey showed [19] that the sum capacity of a synchronous CDMA 

channel with equal average-input-energy constraints is maximized under the choice of WBE 

signature sets. 

In [29], Welch found that a lower bound for the square of the maximum cross-correlation 

of the signature set {Si, • • •, SM} is ä?ZJ(^" 
— !)• It is trivial to show the condition in (3) 

is satisfied by sequences of signature sets that achieve this lower bound. In Appendix B 

we give two examples of sequences of WBE signature sets by exploiting some known results 

on Hamming codes and BCH codes. These sequences of WBE signature sets satisfy the 

condition given in (3) quite well. 

3.2      The Random Signature Case 

In this case users choose signatures randomly and independently, which models the situation 

where the information symbols are spread onto pseudo-random spreading sequences [23, 

26]. When the processing gain is L, the model for random signatures is as follows: Sk = 

^(Wku...,WkL)T, where the Wki's are i.i.d. with P{Wki = 1} = P{Wki = -1} = \ for 

i = 1,..., L and k = 1,..., M. 

Since the P^ J's are i.i.d., and the Wk^s are i.i.d., the received SIRs are also identically 

distributed. Hence, P{SIRk > 7} does not depend on k, and we can study user 1 without 

loss of generality. 

3.2.1    Asymptotic Admissibility 

Assume that the signature for a user is known to the receiver for it. Given the distribution 

of the received powers, we define admissibility for a class of users with random signatures as 

follows: when the processing gain is L, ß users per degree of freedom of the processing gain 

are admissible in the system if 

P{SIR[L) > 7} > a. 

We say ß users per degree of freedom of the processing gain are asymptotically admissible if 

the following condition holds: 

lim P{SIR[L) > 7} > a. 
L—foo 

First we define AM = ^£^2(/f > - ^)$ and BM =  ^E^2£V(L), where & = 
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7L Dfc=i WlkWik. We can get by (2) 

SIR[L)    =     ^ 

Pi (13) 

We have the following lemma on the limits of AM and BM- 

Lemma 3.3  When the processing gain L goes to infinity, AM converges to 0 and BM con- 

verges to fi almost surely. 

Proof: See Appendix A. n 

Based on Lemma 3.3, we have the following result on the asymptotic admissibility for 

the random signature case. (Lemma 3.3 will be used in the proofs of Theorem 3.3 and The- 

orem 3.4. Alternatively, Theorem 3.3 can also be proved by applying [23, Proposition 3.3], 

but the proof would be more involved.) 

Theorem 3.3 Suppose users choose signatures randomly and independently. Then ß users 

(per degree of freedom of the processing gain) are asymptotically admissible if and only if 

a < F"'(i-°)      r, 

Proof: By Lemma 3.3 we have 

SIR[L) =^ -V as L ^ oo. (14) 
V + ßl* 

Since P0 is a random variable with a density function, we have 

P{Po = -r(v + ßp)} = <>- 

By applying [1, Theorem 2.1] again, we get 

lim P{Sm[L) > 7}   =   P { Hm SIR[
L)
 > 7}       " 

=   P{Po>l{ßli + ri)}- 

Thus we have 

lim P{SIR[L) > 7} > a   &   P{P0 > l{ßfi + r])}>a 
L—>-oo 

&   F(j(ßfi + V))<l-a 

<*   ß<  - -• (15) 

D 

We call F~l^-a) - 2. the network capacity in the limiting regime for the given distribution 

of the received powers. 
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3.2.2    Asymptotic Network Capacity 

Similar to the deterministic signature case, the network capacity is defined as the maximum 

number of users (per degree of freedom of the processing gain) that are admissible in the 

system, and depends on a. Thus, when the processing gain is L, we can define network 

capacity as follows: 

ßL(a) = sup {/? P{SIR[
L}
 > 7} > a\ . 

We define asymptotic network capacity ßoo(a) as the limit of /?i(a) when L —> 00, that is, 

/?oo(a) = limL-+00ßL(a). 

Again, for technical reasons, we assume the received powers in the limiting regime have a 

connected support and hence F is strictly increasing over its support. Based on Lemma 3.3, 

we have the following result on the asymptotic network capacity for the random signature 

case. 

Theorem 3.4 Suppose users choose their signatures randomly and independently.  Then the 

asymptotic network capacity is /?oo(a) = F-^l-a) _ v 
7/i 

Proof: By Lemma 3.3, lim£,_j.oo AM = 0 and lim^oo BM = ß with probability one. Fix 

5 > 0. By Egoroff's Theorem in [18], there exists a measurable set A± such that P{A\) < f 

and \AM\ converges to 0 uniformly on Ä\ = Q\Ai', there exists a measurable set A2 such 

that P{A2) < 2 and BM converges to JJL uniformly on Ä2 = 0\A2. 

Let A = Ai U A2 and A = fl\A. Then for fixed e > 0, there exists an integer L0 such 

that for all L > L0, the quantity |Ajvf | is less than or equal to e for every point in Ä; there 

exists an integer Lx such that for for all L > Li, fi — f < BM < fJ- + f for every point in Ä. 

Let L2 = max(L0, -^I)- Then we have all L > L2, 

P{SIR[
L)
 > 7} = P{(SIR{

L)
 > 7) n A} + P{(SIR[

L)
 > 7) n Ä} 

< 6 + P{(P{
k
L) > 7 [r, + BM(FM, k) + AM(FM, k)]) n Ä} 

< S + Fl{7[r1 + ßfxiL)-2e}}, (16) 

and 

P{SIR[L)>7}   >   P{(P{
k
L)>^[r} + BM(FM,k) + AM(FM,k)})nÄ} 

> F^Hv + ß^L) + ^}} + P{Ä)-i 

>   FEMv + ßv{L) + 2e}}-8. (17) 
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Using (16), we have by definition of network capacity, 

We apply Lemma 3.2 and get 

ß^a) =  lim ßL(a) <  ^ L - - + -. 

Observing that both 8 and e are arbitrary , we have 

Poo(a) < • 

Similarly by using (17) we can show for L > L2, 

PL{O.) > • 

Hence we can draw the conclusion that 

F-\l-a)      T] 
ßoo(a) > 

Iß V 

Thus /M«) -  ^£^ -I D 

It turns out that for the random signature case, the network capacity in the limiting 

regime and the asymptotic network capacity, which are different in principle, also lead to the 

same result under the auxiliary assumption made in this section. Moreover, we observe that 

the asymptotic network capacity for the random signature case ß^a) goes to 0 as 7 goes to 

00 even in the high signal-to-noise ratio region (when the background noise power rj goes to 

0). Comparing this observation with the one that the asymptotic network capacity /?oo(a) 

goes to 1 as 7 goes to 00 in the high signal-to-noise ratio region, we conclude that matched 

filter receivers are not robust to the choice of signature sets. 

To get a sense of the results on network capacity, we have the following example. We 

model that the received powers have a log-normal distribution, and take P0 =- 71010, where 

f is some constant and £ has mean zero and standard deviation a d.h. Strictly speaking, to 

be compatible with our assumption on the boundedness of the fluctuation of the received 

power, we should have modeled the received power with a truncated version of the log-normal ■• 

distribution. However, the difference is insignificant and results in unnecessary increase of 

the computation complexity. As shown in Figure 2, a system using optimal deterministic 

signatures yields precisely one more user per degree of freedom of the processing gain than 

one with signatures randomly and independently chosen, which is a generalization of the 

result given in [27] for perfect power control. 
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Figure 2: Network capacity as a function of desired SIR 

3.3    Power Control and Effective Target SIR 

We have studied the admissibility and the network capacity for single class systems assuming 

known distribution of the received powers. On the other hand, one fundamental question to 

ask is "How many users (per degree of freedom of processing gain) can be made asymptoti- 

cally admissible through power control for given QoS requirements?" We study this problem 

in the high signal-to-noise ratio region (when the background noise power r) goes to 0, as 

in [25]). Loosely speaking, the above problem can be regarded as the dual of the near-far 

resistance problem for matched filter receivers. On one hand, near-far resistance concerns 

the worse-case performance; on the other hand, optimum power-controlled capacity concerns 

the best-case performance. 

First we study the deterministic signature case. Define 

ßd = suplim/?oo(a). 
F{x) r'^° 

The calculation of ßd boils down to finding the supremum of the ratio of F_1(l — a) to /i 

over all possible distributions of received powers. It is straightforward to get 

F-\l-a)      1 
sup 
F(x) V 

and the supremum is achieved by any distribution of the form as shown in Figure 3. Hence, 

ßd = £: + 1- Therefore, there exists a distribution function F for the received powers such 

that ß users (per degree of freedom) are admissible if and only if ß < ßd. 

Observe that the optimal power control is in the form of "bang-bang" control. To provide 

more insight into why the distribution function F given in Figure 3 is optimal in the sense 
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Figure 3: The distribution function that achieves the supremum of 
F-Hi-a) 

of maximizing the capacity, we have the following heuristic and interesting interpretation. 

Suppose the number of users (per degree of freedom) is less than (and very close to) (3d. 

Since a user's QoS requirement is that P{SIPSL) > 7} > a, we implement power control 

such that the received SIR of a user is greater than (and very close to) 7 with probability a 

and equals 0 with probability 1 - a. That is, very little power is wasted, which is equivalent 

to saying that the power control is efficient. When a < 1, perfect power control is no longer 

the best in this context by the above observations. The reason lies in the fact that we loosen 

the users' QoS requirements. When a = 1, the optimum power control strategy is perfect 

power control, and ßd = - + 1, which agrees with the expression given in [27]. (Let P denote 

the received power under the perfect power control scheme; we take F_1(0) = P.) 

For the random signature case, we have 

3r = suplim/?oo(a) = —• 

When a = 1, the optimum power control strategy is perfect power control, and ßd — ~, 

which is as given in [23]. 

We proceed to look for an abstraction that can combine the information of both QoS 

requirements and the distributions of received powers for determining the asymptotic ad- 

missibility and characterizing network capacity for single class systems. In an imperfect 

power-controlled system, the actual received powers depend on the fading environments and 

the performance of the power control algorithms. For example, in a log-normal fading chan- 

nel, it is reasonable to assume that the received powers would be log-normal distributed with 

smaller standard deviation if the power control is tight and with larger standard deviation 
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Figure 4: Effective target SIR as a function of desired SIR 

if not (see [28]). 

Note that if ß users are not asymptotically admissible for a given received power distribu- 

tion, it may still be possible to make ß asymptotically admissible by scaling up the received 

power. Referring to the definition of scale family in [2, p. 118], we consider the scale family 

Q = {F(^-),c > 0}, where F is the distribution function of P0. Define 7' = jce, where 

ce = F-u1_ay Clearly, ce is fixed for the scale family Q. We call 7' the effective target SIR 

for Q. For example, we have 7' = aj for the scale family of distributions that have the form 

as shown in Figure 3. 

Figure 4 shows some plots of effective target SIR as a function of the desired SIR. For 

simplicity, again we assume that the received powers have a log-normal distribution, that 

is, P0 = TlOio. Note that £ is due to the channel gain estimation error (see [11]). Several 

observations are worth noting. First, channel gain estimation has much impact on the 

effective target SIR, especially when a is large. The smaller the standard deviation a of the 

channel gain estimation error, the smaller the slopes and hence the effective target SIR. On 

the other hand, it is desirable to reduce the desired SIR for fixed a as much as possible so that 

we can get a small effective target SIR. Sophisticated techniques of coding and modulation 

can be exploited to combat fading and increase the error correcting ability and hence reduce 

the effective target SIR. 

Note that in a given scale family of distributions, there exists a one-to-one correspondence 

between distribution and mean. Given a scale family Q of received power distributions, a 

basic question to ask is if there exists a finite positive value that can be designated as ß 

such that ß users per degree of freedom of processing gain are asymptotically admissible for 
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the corresponding received power distribution in Q. For the deterministic signature case, it 

is easy to observe from (8) that there exists a finite positive solution for fj, if and only if 

ß-^—i < 1; moreover, the minimum value for /i is 
f l-f-y' ' ' 

^ = ^4V- (18) 
1 - 8 -x- 

For the random signature case, it is easy to obtain that there exists a finite positive solution 

for fj. if and only if ßi < 1; the minimum value for (i is 

A* = 
vr 

(19) 
i-ßi 

Note that if ß users are asymptotically admissible for some distribution of the received 

power, then ß users are also asymptotically admissible when we scale up the received power 

by any constant greater than 1. For example, let H denote the distribution function corre- 

sponding to the mean given in (18). An easy observation is that ß users are asymptotically 

admissible when we "scale up" H by any constant greater than 1 (i.e., for any distribution 

function H'(p0) = H(p0/c), c > 1). 

4      Multiple Class Systems 

We have studied the asymptotic admissibility and identified the asymptotic network capacity 

for single class systems in the above section. However, future wireless systems will have to 

support multimedia services such as voice, data, video, and fax. Therefore, it is essential to 

have a level of generalization dealing with users having different QoS requirements. 

Suppose there are a fixed number, say N, of classes. Let An denote the set of users in 

class n and Mn the cardinality of An, n = 1,..., N. Let Sin denote the signature for the »th 

user in class n. Define ßn = M£ and let ßn be fixed when L goes to infinity as in the single 

class case. Let ß = (ßi,..., /?JV)   • 

The received SIR for the ith user in class n is 

p{L) 
cro(i) =  tin , (20) 

in    n + £ ,*„ pjfKszsuy + 5XA» p£\sTnsln)> 

where P^] denotes the received powers for t € An and n = 1,..., N when the processing 

gain is L. 

Again our results are asymptotic in nature. For the sake of simplicity, as in the single class 

case, we let Pn denote a random variable that has the same distribution Fn as the received 
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powers of users in class n in the limiting regime, and assume that Fn has a density function 

and mean \in. For convenience, we call the collection {Fi,..., F/v} a group of received power 

distributions, and P = (/j,i, ... ,^N)
T
 the mean power vector. Suppose it is required that the 

users in class n must have received SIR greater than or equal to -fn with probability no less 

than an £ [0,1]. 

4.1     The Deterministic Signature Case 

We assume that every chosen sequence of signature sets satisfies (3) and 

lim max £(S?n^)2 < co V n, j € {1,..., tf }■ 
l£Aj 

Following the same line of reasoning as in the proof of Lemma 3.1, we apply Lemma 2.1 and 

get as L —> co, 

SIRW   = Pin 

V. Pn 

Let /,-„ = SjnDSin, where D = Ej=i E/e.4 SijSfjVj- Then we have 

(21) 

S/i£> ^ —^-— as L ^ oo. 

Similar to the argument in the single class case, it is desirable to design the signature sets 

such that all users' QoS requirements are satisfied. When En=i A» — 1> orthogonal signature 

sets will work and each single user transmits data as if it were in a single-user channel. 

When En=i ßn > 1) however, a simple closed-form solution to the global optimization of the 

signature sets for this case seems unattainable. Therefore, we study a sufficient condition 

for the asymptotic admissibility of multiple class systems for this case. 

4.1.1    Asymptotic Admissibility 

For ease of reference, first we let FM,U denote the signature set of class n when the processing 

gain is L. Given a group of received power distributions, we say a tuple (/?!,...,/?#) is 

asymptotically admissible if the following condition holds: 

lim   max min P{SIR\n' > 7} > a„,      n = 1,..., N. 
L-Hx> U„FM|„ ieAn 
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Assuming perfect power control, Viswanath, Anantharam, and Tse [27] developed an idea 

of channelizing the system with a finite processing gain and give a sufficient condition on 

the admissibility for users of multiple classes. Following this line, we have the following 

suboptimal scheme: a given processing gain L is divided into N parts and £)n=1 Ln = L, 

where Ln is the degree of freedom assigned to class n. Moreover, we have lim^oo -f = \n 

for n = 1,..., N. Note that users in different classes do not interfere with each other under 

this scheme. 

Observe that Iin = SjnDSin, where D is the same for all the users. This motivates us 

to minimize the maximum among {Iin, i £ An,n = 1,. ..,N} over all the possible partitions 

of the processing gain and all choices of signature sets. Intuitively, we want to suppress the 

interference as much as possible for all the users simultaneously. 

Given a partition of the processing gain, when limi,-^ j^ > 1, we have 

r   ->ßn 
max Iin > —/in, 
ieA„ An 

where the equality holds if and only if the choice of the signature set for class n forms a 

WBE signature set. Under this choice, the /,-n's are the same for all the users in class n. 

Next we aim to find the optimum partition of the processing gain in the sense of minimizing 

the maximum among the Iin\ that is, we have the following optimization problem: 

ßn 
mm    max—fi„, 

{\lt...,\N}    n     Xn 

(22a) 

subject to       {    E^»-1' (22b) 
\    An>0,      n = l,...,N. 

Let bn = ßnVn and A = 1/ £*=1 6„. To solve the above minimax problem, we have the 

following lemma by using [5, Theorem 2.1, p. 114]. 

Lemma 4.1 The vector (A*,...,A^) is a minimax point for (22a) under the constraint 

given by (22b), where \*n = bn\, n = l,...,N. Moreover, we have fj^n = E„=i^' 

n = l,...,N. 

Proof: See Appendix A. D 

In a practical spread spectrum system, it is necessary to have Ln = XnL an integer 

for each n <E {1,.. -, N}. In the asymptotic setting, however, the impact of the difference 

between Ln and [Ln\ on the solution to the minimax problem disappears. 

Now we are ready to give the following result on the asymptotic admissibility of users of 

multiple classes for the deterministic signature case. 
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Theorem 4.1  A tuple (/?!,...,/?#) is asymptotically admissible if it satisfies the following 

two conditions: 

N 

max/in    <    ^2ßjfij, (23a) 

N                           f F~1(l — a ) \ 
Y, ß&i    <   min f -=-i ^ + Ain j - n. (23b) 

Proof: Given a processing gain L, we partition it into N parts such that J2n=i Ln 
= ^> 

where L*n = \*nL. Observe that for n = 1,..., N, 

N b 
fin < YlßjVj     & N

n < ßn 
3=1 Z^n=l "n 

<*      lim ^ < 1, (24) 

Hence, under the above partitioning of the processing gain, we can choose a sequence of 

WBE signature sets in T for each class as L goes to infinity, and users in different classes 

do not interfere with each other. Then we have for i € An and n = 1,..., N, 

N 

A:""" 
= 

r     _ ßn        _ V"^ a 
i-in —   \*lJ"n —  /   j PnfJ-ni 

n=l 

and 

SIR\n' =>•  jj—  as L —»■ oo. 
V + Ej=i ßito ~ Pn 

By definition, a tuple (/?!,..., ß^) is asymptotically admissible if the following inequalities 

hold: 

lim   max minP{SIR{^ > 7} > an n = l,...,N. 

Then it suffices to show lirn^oo P{SIR$ > 7} > an for i G An and n = 1,...,N under 

the above proposed scheme for designing signature sets. Since Pn has a density function, we 

have P{Pn = 7(77 + J2f=1 ßjfij - fin)} = 0. We apply [1, Theorem 2.1] again and get 

\imP{SIR^>7}   =   P{lim5/4L)>7} 

=    p\Pn>T\ri + £ßM-rn)\. 
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Thus, we have for n = 1,..., N, 

lim P{SIR[LJ >7}>«n   &   P{Pn>l[v + Yl ßiN -»n))> ar L^oo [ \ j=1 L-s- 

N 

which is equivalent to 

Ete<^in(Öiz-) + „„)_„. 

This completes the proof. D 

4.1.2    Power Control, Effective Target SIR, and Effective Bandwidth 

As in the single class case, we introduce the scale family Qn = {Fn(^), c> 0} for Pn, where 

Fn is the distribution function of Pn, n = 1,..., N. Define in = 7„cen, where cen = F-ij£_an)- 

As before, cen is fixed for the scale family Qn. We call in the effective target SIR for Qn. For 

ease of reference, we call the collection {&,..., ON} a #roup o/ scale families. 

After straightforward manipulations, (23b) can be written as 

N 

V + Yl ßjV-3 - M» 

Let 

i=i 

n = l,...,N. 

..' \T r = u,...,yNy 
.    1 1 

B   = 

ft   =   ((l + 7i)Mi,..-,(l+7^W)T- 

Using this notation, (23b) further boils down to the following: 

Pd>(ßQBfPdf + rjf, (25) 

where the symbol 0 denotes the operator for Hadamard product, which simply performs 

the element-wise multiplication of two matrices (see [21]). Note that inequality of vectors is 

equivalent to component-wise inequalities. 

We have the following lemma regarding the feasibility of (25). 
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Lemma 4.2   There exists a finite positive vector Pd satisfying (25) if and only if the following 

condition holds: 

71=1 ^     '" 

Moreover, the n-th component of the component-wise minimum mean power vector satisfying 

(25) is 

^ =    _    ^+7"   _^ n = l,...,iV. (27) 

Proof: Let e denote the surplus vector for (25). Note that e is a non-negative vector. Then 

we have 

Pd = f{ßQB)TPd + nf + e. (28) 

Since F(ß 0 B)T is a non-negative irreducible matrix, by [22, Theorem 2.1], a necessary 

and sufficient condition for the existence of a non-negative nonzero solution x to the equations 

(I - T(ß Q B)T)x = c 

for any non-negative nonzero c is that the Perron-Frobenius eigenvalue of F(ß 0 B)T is less 

than 1. Observe that T(ß 0 B)T has rank one. Thus, the Perron-Frobenius eigenvalue of 

Y0®B)T is (/? 0 B)TY by [22, Theorem 1.1]. Therefore, a sufficient condition for the 

existence of a non-negative nonzero solution to (28) is 

0GB)Tf<l, 

that is, 
N 

n=l       T   '" 

Furthermore, if there exists a non-negative nonzero solution to (28) for some particular 

n > 0 and non-negative e, then this solution must be positive and (ß 0 B)TT must be less 

than 1 by [22, Theorem 1.6].   Hence the condition XLzzi^nrrV < 1 is necessary for the 
■*■ i   in 

existence of a positive power vector satisfying (25). 

Moreover, we get the solution to (28) as follows: 

Pd   =    (/-f(/3 0ß)T)   '(ijf + e) 

+ (/-f(/3 0JB)T)~1 f+    T(ßQB)TT 

l-(ßQB)TT_ 

71       r+^i-rißQBfy1?, 
l-(ßOB)TV 
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where we used the following matrix inverse formula in the first step (see [3, Lemma 12.2]): 

/        ^      -T\-i T0QB)
T 

v      yH     ' ) i-(ßQB)Tr 

Under the condition £*=1 ij*r/?» < 1, we have that (/ - T(ß 0 B)T)      is a positive 

matrix by [22, Corollary 1, p.31].   Hence the solution in (28) when e is set to 0 is the 
—* —* 

component-wise minimum Pd.  Recalling the relationship between Pd and the mean power 

vector, we find that the n-th component of the component-wise minimum mean power vector 

is therefore , 
n ln 

11+-/' 

1        Z_/n=l Vn 1+ln 

a 

It is surprising that the necessary and sufficient condition in Lemma 4.2 for the existence 

of a finite positive solution to (25) is the same as that for the existence of a finite positive 

solution to the system of equations obtained by setting all inequalities in (25) to equalities. 

More specifically, the set of positive vectors satisfying (25) is the same as the set of positive 

vectors satisfying the system of equations 

Pd = 0QB)TPdT + rif 

(replacing the inequality in (25) by equality). This remarkable fact is due to [22, Theorem 2.1] 

and a strong result called "The Subinvariance Theorem" [22, Theorem 1.6]. 

Observe that in a given group of scale families, there exists a one-to-one correspondence 

between the mean power vector and the group of received power distributions. Based on 

Theorem 4.1 and Lemma 4.2, we have the following result for a given group of scale families 

Proposition 4.1 There exists a finite positive vector that can be assigned as the mean power 

vector for a tuple (ßi,... ,/?jv) to be asymptotically admissible for the corresponding group of 

received power distributions in {Qi,..., QN} if 

N 

and 
N 

n=l '" 
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Proof: We substitute (27) into (23a) and get for all n = 1,..., AT, 

N 

fJ-n  <^2 ßnVn 
n=l 

< 
1 _ YN   ß -^- ~ i _ YN   ß -ik- 

« YT7^Eß-YT7- (29) 
~   '« n=l /n 

If the two conditions specified in Proposition 4.1 are satisfied, then by applying The- 

orem 4.1 and Lemma 4.2, the tuple (ßx,... ,/3/v) is asymptotically admissible if the power 

vector with n-th component given in (27) is designated as the mean power vector. □ 

Let {Fl5..., F/v} denote the group of received power distributions corresponding to the 

mean power vector given in (27). As in the single class case, it is easily observed that 

(/?i,... ,/5jv) is still asymptotically admissible when we "scale up'1 {Fi,..., F/v} uniformly 

by any constant greater than 1. 

Observing the conditions given in Proposition 4.1, we are motivated to extend the insight- 

ful idea in [23] and define the effective bandwidth of class n for the deterministic signature 

case as S{jn) = jr^ir degrees of freedom per user. However, we are able to give only a 

sufficient condition for asymptotic admissibility of a tuple (ßi,... ,ßw) in terms of effective 

bandwidth. Further work is needed for this case. 

It is easily observed that the smaller the effective target SIR, the smaller the effective 

bandwidth. Under the optimum power control stated in the single class case, 7^ = anjn, 

n = 1,..., N. Therefore, the conditions given in Proposition 4.1 become the following: 
TV 

1 + a„7„       ^-f      1 + an , -    ■       it. }n 
»1=1 

and 
N 

t-*     1 + a„7n n=l 

4.2    The Random Signature Case 

Similar to the approach in the single class systems with random signatures,  we apply 

Lemma 2.1 and get, 

SIR& =2*        J; as L -+ 00. (30) 
V + £„=i ßnVn 

We can study the first user in class n without loss of generality. 
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4.2.1     Asymptotic Admissibility 

Given a group of received power distributions, we say a tuple (ßu... ,/?jv) is asymptotically 

admissible if the following condition holds: 

lim P{SIR{LJ > 7} > an n = l,...,N. 
L—s-oo 

We have the following result on the asymptotic admissibility of users of multiple classes 

for the random signature case. 

Theorem 4.2 Suppose users choose their signatures randomly and independently.  A tuple 

(/?!,... ,/?JV) is asymptotically admissible if and only if 

E &/*» ^ mn
m I—z-—) -* (31) 

n=l 

Proof: Since Pn has a density function, we "conclude by applying [1, Theorem 2.1] that 

limP{S/itff>7}   =   P{^mSläS>l) 

 £ >7 
. V + En=l ßnUn 

By  definition,  a tuple  (ßu...,ßN)  is  asymptotically admissible if and only if for 

n = l,...,N, 

lim P{SIR[y > 7} > an- 

Thus we have for n = 1,..., N, 

lim  P{SIR$ >7}>«n     <^     P<Pn>7(^ + y] &M»  {   \   > an 

, In n=l 

which is equivalent to 

The proof is complete. D 
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4.2.2    Power Control, Effective Target SIR, and Effective Bandwidth 

Again we define 7' = 7ncen, where cen = tf
n—r is fixed for the scale family Qn, 

n = 1,...,N. Then, using similar manipulations as in the deterministic signature case, 

(31) can be simplified to 

P > ßTPf + nf. (32) 

We have the following lemma regarding the feasibility of (32). 

Lemma 4.3 There exists a finite positive vector P satisfying (32) if and only if the following 

condition holds: 
N 

$>»Vn<l- (33) 
n=l 

Moreover, the n-th component of the component-wise minimum mean power vector satisfying 

(32) is 

^ = —-™L_, n = l,...,N. - (34) 

Proof: Similar to the proof of Lemma 4.2, we rearrange the terms in (32) and let e > 0 

denote the surplus vector for (32), i.e., 

P = f ßTP + r)Y + e. (35) 

The Perron-Frobenius eigenvalue of YßT is ßTF. By [22, Theorem 2.1], a sufficient 

condition for the existence of non-negative nonzero solution to (35) is that X)n=i l'nßn < 1- 

On the other hand, the condition X^n=i ßnln < 1 is also necessary for the existence of a 

positive power vector satisfying (32) by [22, Theorem 1.6]. 

Furthermore, the solution to (35) is 

P   =    (/-f/3r)_1(77f + e) 

=     ^f + a-f/^e. (36) 
l-ßTT 

Under the condition Yln=i l'nßn < 1? we have that (I — Fß7)-1 is a positive matrix by [22, 

Corollary. 2.1, p.31]. Therefore, the solution in (36) when e is set to 0 is the component-wise 

minimum mean power vector, that is, the component-wise minimum mean power vector is 

achieved when all the N inequalities in (32) are satisfied as equalities. The n-th component 

of this component-wise minimum mean power vector is 

"7n 

*■ ~ 2^/n=l PnJn 
D 

/^n —  -       v-^7V 
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Based on Lemma 4.3, we can easily obtain the following result for a given group of scale 

families {Gi,..., GN}- 

Proposition 4.2 a). There exists a finite positive vector that can be assigned as the mean 

power vector for a tuple {ßu...,ßN) to be asymptotically admissible for the corresponding 

group of received power distributions in {Gi,..., GN} tf and only if 

N 

£/W»<i- 
n=l 

Moreover, the n-th component of the component-wise minimum mean power vector is 

„   - ^n  n - 1 N fin- N , *     l,...,;v. 
1       Z-m=l rn Jn 

b). If class n users have an average power constraint that /j,n < Pn, n = 1,..., N, then 

there exists a finite positive vector that can be assigned as the mean power vector for a tuple 

(/?i,...,/?AT) to be asymptotically admissible for the corresponding group of received power 

distributions in {Gi, ■ ■., GN} if and onh if 

N / , 

n=l "      ^ 

Proof: Part (a) follows by combining the results of Lemma 4.3 and Theorem 4.2. 

For part (b), we combine equation (34) with the constraint fj,n < Pn to obtain 

^n < P n = 1 N 

l-El.A.14- "' 
which is equivalent to 

J]/3„7:<minM -^J. 
n=l 

The result then follows from Lemma 4.3 and Theorem 4.2. O 

Proposition 4.2 is a generalization of the result given in [23]. Similar to the deterministic 

signature case, we define the effective bandwidth of class n for the random signature case as 

£(7n) = 7^ degrees of freedom per user. Proposition 4.2 tells us that for a given group of scale 

families, a tuple {ßu ... ,/?jv) can be made asymptotically admissible through power control 

(without power constraints) if and only if the sum of effective bandwidth of all classes is less 

than one. Under the optimum power control stated in the single class case, the condition 

given in (33) boils down to JZn=i ßnanjn < 1- 
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5     Conclusions 

We have studied single-cell synchronous CDMA systems with matched filter receivers in fad- 

ing channels, assuming known distributions of received powers of mobile users. We studied 

the asymptotic admissibility for both single class systems and multiple class systems. For 

systems with random signatures, we gave necessary and sufficient conditions on the asymp- 

totic admissibility. For users with deterministic signatures, we gave a necessary and sufficient 

condition for single class systems, but only a sufficient condition for multiple class systems. 

Further work is needed for this case. 

We have identified the asymptotic network capacity of single class systems for both the 

deterministic signature case and random signature case. The asymptotic network capacity 

for single class systems can be uniquely expressed in terms of the users' QoS requirements 

and the distributions of the received powers. We identified the optimal sequences of signature 

sets for the deterministic signature case in an asymptotic setting. 

We also found the tightest upper bound on the asymptotic network capacity over all 

possible distributions of received powers, and explored the concepts of effective target SIR 

and effective bandwidth, which play an important role in determining the asymptotic admis- 

sibility and hence the asymptotic network capacity. Our results are useful for network-level 

resource allocation problems such as admission control and power control in a large network. 

It is easy to generalize these results to obtain asymptotic network capacity of CDMA systems 

that employ the techniques of sectorization and voice-activity monitoring (see [6]). 

In this work we have focused on finding the network capacity so that we can determine 

how many users can be accommodated without sacrificing their QoS requirements. On the 

other hand, another fundamental issue is the channel capacity. That is, how much infor- 

mation can be transmitted reliably through fading channels in CDMA systems with linear 

receivers? Some work along this line is already underway (e.g., [26]). Our own preliminary 

study shows that there exists a tradeoff between network capacity and channel capacity. 

Intuitively, the more the users in the systems, the stronger the MAI (multi-access inter- 

ference) that is imposed by other users, and hence the less the information that can be 

transmitted reliably over the channel. Currently we are looking into this problem. It will 

also be interesting to take into account the restriction imposed by real-time traffic, which is 

delay-limited. 

It must also be pointed out that our results are for single-cell synchronous systems, 

as is the case in [23, 27]. Further work is needed to extend these results to multiple-cell 

asynchronous systems. 
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Appendices 

A    Proofs 

A.l    Proof of Lemma 3.1 

Proof: Proof for part (a): Let pff = (S]:St)
2. Then AM(FM,k) = £& (^ - P{L))pi?- 

By Lemma 2.1, it suffices to show that AM(FM,k) converges to 0 in probability and 

M 

t=l 
ijtk 

(Note that M = ßL and ß is fixed.) 

By assumption, \P-L)-^L)\ is bounded by d with probability one, which implies var(Pi    ) 

is bounded by d2. Since the P-(L)'s are i.i.d., and limL^oo maxt YfjLi Pk? < °°> we have 

M M 

E(AM(FM,k)f = f>i?)2var(/f >) < sup p™ Y^ "> °' 

where the last step follows from the fact that Hindoo sup i,k<M p[y = 0.   Thus AM(FM,k) A i^k 

converges to 0 in probability since mean-square convergence implies convergence in proba- 

bility. 

Note that 

M M 

YipM _ ^))\p^f log L < ( sup p$ log L)d? Y, Pfi   ^ °- 
i?k '*k 

Hence limL-K» AM(FM, k) = 0 almost surely. 

Proof for part (b): 

By Welch's bound in [15], 

This implies that 

and 

MM M2 

EDft^T (37) 
t'=l   j=l 

MM M2 

EB»4-"' 
»=i J=I 

3*> 

M 

max£(Sf^)2 >/?-!. 
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Thus 
M 

min    max^(5f^)2>/?-l. (38) 
\bi,...,i>M}      l       ~7 

7 = 1 

Furthermore, limL->oo ^L^ = A'- Hence we have 

lim     min    max BM(FM, k) > (ß — l)/u. (39) 
//-»-co {5i,...,5M}      i 

Since the equality in (37) is achieved when {FM} is a WBE (Welch Bound Equality) 

signature set (see [15]) , the equality in (39) can be achieved by a sequence of WBE signature 

sets satisfying (3). D 

A.2    Proof of Lemma 3.2 

Proof: To show lim^oo an(a) = f~l{a), it suffices to show limsupan(a) < f~l(a) and 

liminfan(a) > /_1(a). 

First suppose liminfan(a) < /-1(a). Choose s,t such that liminfan(a) < s < t < 

/_1(a). Then there exists n-i < n2 < ... such that anj(a) < s < t < f~1(a) for all 

j = 1,2, — Hence we have 

/n>n»)  > fn3(s) > fn}(t) > /^(/^(a)). (40) 

By the definition of an(a), we have fnj(ctnj(a)) — a since the /nj's are continuous. More- 

over, since {/„} converge to / point-wise, we have lim^oo fnj(s) = /(s), lim,-.*» fnj(t) = 

f(t), and limj^oo fnj(f~
l(a)) = a. We take limit of (40) and get 

a > f(s) > f(t) > a. 

In the above step, we have exploited the fact that f(s) > f(t) since s < t and / is strictly 

decreasing. Thus, we get a contradiction. This implies liminf an(a) > /_1(a). 

Following the same line, we can show limsupa„(a) < /_1(a). Hence lim^oo an(a) = 

/-1(a), This completes the proof. D 

A.3    Proof of Lemma 3.3 

Proof: By assumption, the signature Si is known to the receiver for user 1. Thus, the £,-'s 

are i.i.d. for i = 2,..., M. 
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Since E\Q\ = EQ = 1 for i = 2,..., M, we have ^ £^2 £ ^ * by the StronS Law of 

Large Numbers. Moreover, limL_*oo ^(L) = \x. Hence, as L goes to infinity, we have 

(sfr?)^ 
Next we show that limi,-*» AM = 0 almost surely. To this end, by Lemma 2.1, it suffices 

to show AM converges to 0 in probability and 

M 

Observe that 

fci    ... &2       ^3       &4 

1 0 <   - + 3 < oo. 
- Li 

Combining the above with the fact that var(i^(L)) < d2, we conclude that limL-*» E(AM)2 = 

0, and hence AM converges to 0 in probability. 

By the Strong Law of Large Numbers and the independence of {P;    } and {&}, we have 

that 

|E(^(L)-^(L)R4^var(Po)^2
4. 

»=2 

This implies 
M 

t'=2 

Hence 

M 

This completes the proof. 

t'=2 

D 

A.4    Proof of Lemma 4.1 

We use the following lemma, which follows directly from [5, Theorem 2.1, p. 114] and [5, 

Property III, p. 51]: 

Lemma A.l Let fn{x), n G {1,..., AT}, be continuously differentiable convex functions on 

a convex closed set ft in Rn. Consider the problem 

min    max    fn(x). 
xZQ, ne{l,...,N} 
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A point X*  G fi is a minimax point for the above problem, (i.e.,  a solution to the above 

optimization problem) if and only if 

inf   max   (dfn^,z-X*\ = 0, (41) 
z<=üneR(x*) \     dx I 

where (•,•) denotes the inner product in W1, and 

R(x) = lne{l,...,N} 

Proof: Fix e such that 0 < e < minne{ii...)jv} A*. Define 

n = \(\u...,xN) 

fn(x) =     max    fn(x) > . 
n£{l,...,N} 

^ An = 1, An > e, n = 1,..., N > . 
71=1 J 

It is easy to verify that Q is a closed convex set. 

Let a; = (Ai,..., \N), and define fn(x) = |^, for n = 1,..., N. Note that fn(x) = ^ is 

convex on fi. 

Observe that X* = (A^,..., A^) is in tt. Next we verify that X* satisfies the condition 

specified in Lemma A.l. Let (z — X*) = {zx — A*,..., zjq — X*N). We have 

dx iu,...,u, A2 ,u,...,uj, 

which implies 
d-M^l = <o     o-ic     o) 

dx       w    ' '6„A2'u''--'u;- 
Hence 

(^P^"X*) = 6^(^"A:) forn€{l,...,iV}. 

Note that the expression on the left hand side of (41) cannot be positive since we can always 

take z = X* and get a zero inner product. We will prove by contradiction that the condition 

in (41) is satisfied by X*. 

Suppose (41) fails to hold for X*. Then there exists a point Z = (z1:... , zyv) e 0, such 

that 

neR{x*) \     dx I 
>7V Since fn(X*) = J2n=i ßnfJ-n for n = 1,..., N, we have 

max   (^4^-,Z-X*)<0 
neR(x*) \     dx 

max    (9fnf;X*\z-X*)<0, (42) 
n£{l N} \       dx ' K     ' 
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that is, for any n G {1,..., A^}, 

■dfn(X* ,z-x*) <0. 
dx 

Hence, we have 

m^^z_x^ = _±{Zn_K)<0 vne{i,...,yv}. 

Therefore, we get zn > \*n for any n G {1,..., N} since bn > 0. Thus, 

N N 

n—l n=l 

which implies that Z is not in ft, a contradiction. Therefore, X* satisfies (41). 

Since we can choose arbitrarily e between 0 and minne{i,...,Ar} A*, we conclude that X* is a 

minimax point for (22a) over the constraint in (22b), and f|//n = £n=1 ßnHh> n = 1,..., N. 

D 

B    Examples of sequences of WBE signature sets satis- 

fying (3) 

In practical spread spectrum systems, the processing gain L is of the form 2m for some 

integer m (m = 7 in IS-95). For large L, the contribution of one position in the spreading 

sequence to the cross-correlation of the signatures is negligible. Hence, we consider L in the 

form of 2m - 1. 

As in [15], we associate a binary sequence B = [bu 62,..., bL] in GF(2)L with a spreading 

sequence S = -4^[si, s2,..., sL], where the component-wise mapping is as follows: 

_  f 0   if sk = 1 

"_\ 1   if^ = -l   ' 

Let S and S' be two arbitrary spreading sequences of length L = 2m - 1, and B and 

B' the corresponding binary sequences in GF(2)L. Then {STS') = ^^&^\ where rf(-,-) 

denotes the Hamming distance between the indicated vectors. 

Example 1: 

Let [/ denote a Maximum-Length Shift-Register Code of length L = 2m - 1 where m > 2 

and IIs- its dual code.   Then U is a (L, m) linear code in which all codewords except the 
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all-zero codeword have identical weight 2m_1 ([16], p. 435). Moreover, UL is a Hamming 

code with minimum distance 3. By the corollary to Proposition 2 in [15], a binary signature 

set corresponding to a binary linear code is a WBE signature set if the minimum distance of 

its dual code is at least three. Thus, the signature set (say A) corresponding to U is a WBE 

set. 

Let S and 5" be two arbitrary and different spreading sequences chosen from A. Then 

d(B, B') = 2m~l since the code is linear, and STS' = L~2d^B') = =1. As L goes to infinity, 

sup {{STS'f logL \S,S'eA,S^S'}^ 0. 

In this example, lim^oo 3- = 1. 

Example 2: 

Let V denote a Triple-Error-Correcting Primitive Narrow-Sense Binary BCH code for 

L = 2m - 1 and V1 its dual code. Recall that a binary (L, K) linear code is a /{"-dimensional 

subspace of GF(2)L. We conclude that Vx is a 3m-dimensional subspace of GF(2)L. We are 

going to construct a linear code U which is a ^-dimensional subspace of VL for m < k < 3m 

by using the weight distribution of V1 [30, p. 185]. 

First we consider the case m > 5, m odd (the weight distribution of V1- for L = 2m — 1, 

m > 5, m odd is given in Table 8-2(a) in [30, p .185]). Suppose we choose x, y, z, u, and w 

codewords having weights 2m_1 - 2^, 2m_1 - 2^, 2m_1, 2m_1 + 2^ and 2m_1 - 2^ 

respectively. Moreover, it is required that x + y + z + u + w = 2k-lso that we can construct 

a (L, k) block code U by using the above 2k — 1 nonzero codewords plus all-zero codeword. 

By using the Mac Williams Identity in [30, p. 90], we can get the weight enumerator of the 

dual code UL. We can choose proper values for x, y, z, u, and w so that the coefficients A1 

and A2 in the weight enumerator of UL are zero. This can be achieved in general since we 

have five variables but only three constraints. (Noting that the bounds on x, y, z, u, and w 

given in Table 8-2(a) in [30, p. 185] are much larger than L when m is large, we can choose 

x, y, z, u, and w as needed for moderate ß.) Therefore, there is no codeword having weight 

1 or 2 in the dual code UL. By the corollary to Proposition 2 in [15], the signature set (say 

A) corresponding to C/x is a WBE set. 

Similarly by exploiting the Table 8-2(b) in [30, p. 185], we can show that the signature 

set corresponding to UL is a WBE set for the case m > 5, m even. 

Again let S and S1 be two arbitrary spreading sequences chosen from the above WBE 

set, and B and B' the corresponding binary sequences in GF(2)L. From Table 8-2(a) and 

Table 8-2(b) in [30, p. 185], we have that sup {\(STS')\ \S,S' G A,S ± S'} < 4L~± and 

sup {(STS')2 log L \S,S' eA,S^S'} ^OasI goes to infinity. 
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In this example, ß = limjr,-,.^ j- can be chosen to be 2,4, etc. 
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1     Introduction 

In the last few years, wireless communication systems have experienced tremendous growth 

[19]. Compared to its wired counterpart, the wireless spectrum is a much more scarce re- 

source. Cellular technology is an effective means of improving spectrum utilization in the 

wireless environment. In a cellular system, the service area is covered by a number of con- 

tiguous small zones, called cells. The same spectral resource can be reused simultaneously 

in different cells, provided that their mutual interference is low enough for reliable commu- 

nication in individual cells [9]. The unit of wireless spectrum needed to serve a single user 

is called a channel. For example, in FDMA systems (or in a TDMA/FDMA system like 

GSM), a frequency carrier can be viewed as a channel. In current cellular systems, espe- 

cially in the circuit-switched environment, channel reuse is separated by at least a minimum 

reuse distance, which is typically set such that the signal-to-interference ratio (SIR) on the 

same channel statistically exceeds some threshold. A significant body of research has been 

conducted on efficiently allocating channels to individual cells under this minimum reuse 

distance constraint [12, 21], among which there are fixed and dynamic channel allocation 

schemes. 

Next generation wireless systems are envisioned to support high-speed multimedia appli- 

cations. For example, there has been a significant research effort devoted to the development 

of wireless ATM networks. It is expected that packet-switching technology will prevail in 

future wireless multimedia systems [1, 2, 3, 4, 6, 7, 8, 10, 14, 17, 18, 19, 22]. The design 

and control of high-speed wireless networks is a challenging task. Experience in the wired 

network environment has shown that to maintain reasonable quality of service for multi- 

media applications, we need a very large channel capacity. The capacity problem becomes 

even more severe in the wireless environment. Thus, one of the crucial problems that must 

be solved for the next generation wireless systems is to use as much spectral capacity as 

possible on the wireless link, especially by taking advantage of the mechanisms provided by 

packet-switching. 

In packet-switched networks, the success of a transmission is measured in a packet-by- 

packet fashion. In particular, a packet transmission in a cell is successful if the power 

received from the transmitter in that cell is sufficiently stronger than the power received 

from transmissions using the same channel in other cells. The capability to detect a packet 

in the presence of interference is known as capture. Note that in the wireless environment, 

whether capture occurs or not depends on many factors, including electromagnetic signal 

propagation conditions (e.g., fading and shadowing) and traffic conditions (e.g., locations of 



interfering transmitters), and thus may fluctuate rapidly with time. Therefore, it is desirable 

that packet transmissions take advantage of the time periods during which capture occurs. 

Based on the notion of capture, a new family of spectrum reuse methods have been 

recently proposed in the literature [5, 16], which we call capture-based spectrum reuse. The 

basic idea is to reuse the same channels in each cell. Thus, the capacity per cell is increased. 

Now, since more interference is introduced due to closer channel reuse, capture failure is 

likely to occur. When capture fails, packets are retransmitted until capture is successful. 

The rationale here is that since the propagation delay between a user and its base-station is 

usually small (in the order of a few bits of transmission delay), recovery by retransmission 

is an effective mechanism for dealing with capture failure. However, we note that capture 

failure degrades the effective spectrum utilization, and also impacts the delay that packets 

may experience before successfully being delivered. 

In this paper, we propose a novel static power control (SPC) scheme to alleviate the 

problem of capture failure. Power control is a technique for assigning different values of 

transmission power to different users. Unlike most power control schemes in the literature, 

in our scheme, the power levels at the different cells are determined a priori, and thus no 

real-time intercellular signaling is required. To further simplify implementation, the power 

control is static and the power control levels are determined beforehand. 

The remainder of this paper is organized as follows. In Section 2, after introducing 

the concept of capture, we review Capture Division Packet Access (CDPA), a capture-based 

spectrum reuse scheme, and discuss the problems with CDPA. We introduce our static power 

control (SPC) idea, namely the primary/secondary scheme, in Section 3. We formulate 

an optimal scheduling problem for the SPC scheme, and derive a necessary condition in 

Section 4. We further illustrate the optimal scheduling solutions by considering two specific 

optimization problems. In Section 5, we numerically evaluate the system performance via 

both analysis and simulation, and quantitatively compare our results with other spectrum 

reuse schemes. 

2    Capture Model and Capture Division Packet Access 

Consider a cellular mobile system in which each cell contains a base-station that communi- 

cates with mobile users in that cell. In this paper, we consider a time-slotted framework, 

and assume that the size of packets in the cellular network is fixed and that exactly one 

packet can be transmitted in one time-slot. 



(a) Successful Capture (b) Unsuccessful Capture 

Figure 1: Capture model 

Suppose that in a given time-slot of a carrier, there are two or more users transmitting 

packets. The transmissions may interfere with each other, and depending on the level of 

the interference, some of the transmissions may be unsuccessful. As discussed earlier, a 

successful transmission is referred to as capture. More specifically, a common capture model 

is that capture occurs (for uplink communication; for downlink communication, one can 

define capture similarly) for some user 0 if the signal-to-interference ratio (SIR) exceeds 

some constant threshold: 
Wo 

>b. (1) 
£*o Wi + ?7o 

Here, W0 is the received power at user O's base-station, Wi are the received powers from 

other co-channel users at the same base-station, 770 represents the background noise, and b 

is called the capture ratio. For example, in Figure 1(a), the locations of users Aj and A2 

are such that the interference between them is small compared to their signal strengths, 

and capture occurs, i.e., both users using the same time-slot of the same carrier successfully 

transmit to their respective base-stations. On the other hand, in Figure 1(b), the locations 

of users A\ and A2 are such that capture fails. 

The capture ratio b is an important parameter that reflects the physical layer requirement 

for reliable communication. Various technologies react to interference differently [13]. For 

example, AMPS (Advanced Mobile Phone System) requires b « 17 - 18 dB. Other systems, 

including TACS (Total Access Communications System) and NMT (Nordic Mobile Tele- 

phone), are all roughly similar to AMPS in their interference characteristics. U.S. IS-54 and 

IS-136 TDMA reduces the requirement to 14 dB because they employ digital techniques. Due 

to its more robust modulation scheme, GSM (Global System for Mobile communications), 

however, can tolerate co-channel ratios as low as 6.5 to 9 dB. The capture ratio determines 

how difficult it is for capture to occur. For example, with the same SIR, capture occurs less 

often for a larger value of b than a smaller value of b. Later, we will find that the value of b 

significantly impacts the performance of different spectrum reuse schemes. 



As mentioned earlier, by taking advantage of the capture effect, the capture-based spec- 

trum reuse schemes attempt to increase spectral capacity for packet-switched wireless sys- 

tems. Specifically, the distance between cells that are allowed to transmit in the same 

channel is shorter than the minimum reuse distance. Hence, the number of channels that 

can be allocated to an individual cell is significantly increased. 

An important example of the capture-based spectrum reuse schemes is the Capture Divi- 

sion Packet Access (CDPA) scheme, proposed in [5]. In CDPA, users in all cells can transmit 

in the same time-slots of each carrier, with some permission probability, and if capture does 

not occur, this collision is resolved by retransmitting the packet a random time later. By 

using a precise intracellular multiple access control mechanism, CDPA ensures that there is 

no contention between users within any given cell and that capture failure is due only to the 

interference from neighboring cells. In [5], it was shown via numerical studies that CDPA 

can outperform standard TDMA, especially when the capture ratio is relatively low (e.g., 

6 = 6 dB). However, the results are not satisfactory when the capture ratio is high (e.g., 

b = 10 dB). 

With CDPA, in both uplink (mobile-to-base-station) and downlink (base-station-to- 

mobile) communication, the probability that capture occurs (capture probability) depends 

strongly on the location of a mobile user, and that excessive retransmissions may result, 

especially for users that are located geographically in a way that makes capture difficult. 

We call this phenomenon the near-far effect, and illustrate it in Figure 2. In Figure 2(a), 

we plot a typical curve of the capture probability versus the distance of a mobile user to its 

base-station. It is apparent that the SIR for mobile users close to the base-station ("near" 

users) is high, thus leading to high capture probabilities. However, users far way from the 

base-station ("far" users), with weaker signals but stronger interference, suffer very low cap- 

ture probabilities. Therefore, to maintain some degree of fairness among users in different 

locations in the cellular network, one has to allocate more retransmission opportunities to 

the unfavorably located users, who use a significant portion of the spectrum. For example, 

in Figure 2(b), we plot the density function of the spectrum allocation that keeps the same 

throughput for mobile users in different locations. Clearly, users far away from the base- 

station become the bottleneck for network efficiency. In the following sections, we present 

our SPC scheme to address this bottleneck problem. 
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Figure 2: Illustration of the near-far effect in CDPA (a) Users further away from the base- 
station may experience substantially lower capture probability, (b) More retransmission 
chances (hence higher capacity) have to be allocated for users that are further away from 

the base-station. 

3    Primary/Secondary Assignment 

In our scheme, we employ a simple reservation-based technique, similar to the one pro- 

posed in [11], for multiple access control of users within a cell. In particular, a fraction of 

the time-slots on the uplink channel are designated as reservation slots. Mobile users who 

start/resume to send payload packets inform the base-station by transmitting request pack- 

ets on those reservation slots with some random access mechanism (e.g., ALOHA). Clearly, 

communication on the reservation slots could experience contention, and collisions may oc- 

cur. The size of the request packets is chosen to be much smaller than that of the payload 

packets, so that this collision probability is very small. The base-station, upon receiving a 

request packet, schedules the transmissions for the intended mobile user, according to some 

scheduling discipline, by sending commands along with downlink payload packets, on the 

downlink channel. In this way, uplink payload transmissions are ensured to be contention- 

free. Therefore, in our SPC scheme, the transmissions in a given cell on both uplink and 

downlink channels are completely controlled by the base-station. 

Recall from our previous discussion that a problem with CDPA is that it relies solely 

on random fluctuations of the SIR to combat capture failure, and consequently results in 

excessive retransmissions, especially for "far" users. Instead of wasting spectral resources on 

retransmissions, we aim to improve the probability of a successful transmission by a priori 

coordinating user transmissions over different cells. Since "far" users represent a bottleneck 

that requires a significant percentage of retransmissions, our basic idea is to improve the 
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Figure 3: Illustration of primary/secondary idea 

capture probability of these users by reducing the interference they experience. 

Consider the following intuitive heuristic. When a "far" user is transmitting (or receiving) 

packets in a given cell, the idea is to reduce the power of simultaneous transmissions in the 

adjacent cells. On the other hand, since the power levels are reduced in the adjacent cells, 

only "near" users can be served in the adjacent cells, for otherwise the capture probability 

could become even worse. For the illustration of this heuristic, consider Figure 3, in which 

we show two adjacent cells in the cellular network. Here, we allow the base-station in the 

right cell to use one carrier (carrier A) with full power and serve a "far" user in the cell, 

while the left cell uses the same carrier, but with a reduced power level and serving only a 

"near" user. We do the reverse on another carrier (carrier B), to maintain fairness between 

the two cells. 

In general, in our scheme, carriers that are assigned to each cell in the cellular network are 

either primary or secondary. Primary carriers can be used to transmit (or receive) packets 

at the full allowable power WT, while secondary carriers can only be used to transmit (or 

receive) packets at a reduced power level JWT, where 0 < 7 < 1. This primary/secondary 

scheme is the basis for our SPC scheme. Note that 7 is an important tuning parameter that 

can be used to balance capture success in cells using primary and secondary carriers. At one 

end, when 7 = 1, there is no difference between the primary and secondary carriers, and our 

scheme is indeed equivalent to CDPA. At the other end, when 7 = 0, the capture probability 

in the secondary cells is reduced to zero. In fact, there is no communication activity at 

all in the secondary cells, which is similar to standard TDMA with a certain fixed channel 

reuse distance. Later we will show that, by applying an appropriate scheduling strategy, our 

primary/secondary SPC scheme can outperform both CDPA and TDMA. 

We point out two fundamental advantages that make our SPC scheme practically attrac- 

tive: 

1. The assignment of primary/secondary carriers to any particular cell is determined 
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Figure 4: Linear cellular network with primary/secondary cells interleaved 

beforehand, and no real-time intercelluar signaling is required. 

2. Power control is static, i.e., 7 is a constant. In particular, here we consider two power 

control levels that are set a priori and whose values are not changed. Note that this 

is very different from other power control schemes in the literature, where the power 

is allowed to be changed dynamically and hence more sophisticated signal processing 

is required for their implementation. 

The question to answer now is how to schedule users in different locations, under this 

primary/secondary SPC scheme. In our earlier heuristic discussion, illustrated via Figure 3, 

we suggest serving "far" users with primary carriers and "near" users with secondary carriers. 

To more precisely answer the above question, we next formulate an appropriate optimization 

problem and develop an optimal scheduling policy. Interestingly, it turns out that under 

certain conditions, the optimal solution agrees with our intuitive heuristic scheme. 

4    Optimal Scheduling 

4.1    System Description 

For simplicity of description, consider a linear cellular system, where the base-stations are 

numbered as {..., 0,1,2,..., }, and where the distance between two adjacent base-stations 

is normalized to be 2. Mobile users communicate with their nearest base-station. Thus, the 

radius of each cell is 1. 

In our scheme, we group all the carriers into two distinct carrier-sets A and B. All odd- 

numbered cells are assigned carrier-set A as the primary carrier-set, and carrier-set B as the 

secondary carrier-set; the even-numbered cells are assigned carrier-set B as their primary 

carriers, and carrier-set A as their secondary carriers. Due to symmetry, without loss of 

generality, we next focus only on carrier-set A, and thus call the odd-numbered cells the 

primary cells and even-numbered cells the secondary cells. 



Let gp(x) and gs(x), with 0 < x < 1, be the probability density functions of the traffic 

load (or simply traffic load densities) at a "distance" x away from the base-station when 

the cell is primary and secondary, respectively. Note that these traffic load densities include 

both new and retransmitted packets, and can be either downlink or uplink. The distance 

parameter x is referred to as location x. Note that x may be used to represent path loss, 

not just physical distance from the bas-estation. We call the pair {gp(-),gs{-)} the traffic 

load density pair. We assume that the traffic load densities are piecewise continuous. The 

aggregate traffic loads in a primary and secondary cell are given by Gp = 2/Q
1
 gp(x) dx and 

Gs — 2 J0 gs(x) dx, respectively. We can also interpret Gp and Gs as the probabilities that 

a transmission occurs in a primary and secondary cell, respectively. 

Let Pp and Ps denote the capture probabilities in a primary and secondary cell, respec- 

tively. The capture probabilities depend on both the location where packet transmission 

occurs in the cell and the interference from the adjacent cells. Thus, in general, we use the 

notations Pp(x,gp(-),gs(-)) and Ps(x,gp(-),gs(-)) to reflect this dependence. 

We define s(x) to be the throughput density (or probability density function of the 

throughput a distance x away from the base-station), per carrier1, at a location x, which is 

given by 

<x) = \{9p(*)Pp(x,9p(-),9s(-))+gs(x)Ps(x,gp(-),gs(.))). (2) 

We now formulate the optimal scheduling problem as 

maximize      /(5(-)) 
gp(-),9s{-) 

subject to      h(s(-)) > 0 (3) 

where / and h are general functions satisfying the following condition: 

(Cl) If h(s(-)) > 0, then for all C > 0, we have /(s(-) + C) > f(s(-)) and h(s(-) + C) > 0. 

The above optimal scheduling problem is very general and captures a variety of realistic 

problems. Some examples of useful functions / and h are: 

• f(s(')) = S = 2 Jo s(x)dx, the overall throughput in a cell. 

• h(s(-)) = mfxs(x)/u(x) — supxs(x)/u(x), where u{x) > 0 is the user location density 

(representing non-uniformly distributed traffic). This constraint implies uniform fair- 

ness, i.e., the throughput per user is the same for different locations in the cell. The 

uniform fairness constraint is one that is typically studied in the literature, for example 

in [5]. 
xNote that the throughput in a cell comes from traffic on both carrier-sets A and B. 



More generally, we can have a non-uniform fairness constraint: 

h(s(-)) = c- (sups(x)/u(x) - mfs(x)/u(x 

where c > 0 is some constant. This implies that the difference between the maximum 

and the minimum throughputs per user is bounded by an amount c; i.e., 

sup s(x)/u(x) - mis(x)/u(x) < c. 
x x 

If we choose c = 0, then the above reduces to the uniform fairness constraint. 

• Alternatively, we can have 

c _ sup,, s(x)/u(x) - infx s{x)/u(x) 

^ ^ '' supxs(x)/u(x) 

which implies that the relative difference in throughput is constrained to be less than 

some constant c; i.e., 

sup^ s(x)/u(x) - infg s(x)/u(x) 

s\ipss(x)/u(x) 

4.2    Necessary Conditions for Optimality 

Before, we proceed to solve the optimization problem (3), we impose the following condition 

on the capture probabilities: 

(C2) At any location in the cell, the capture probabilities depend only on the aggregate 

values of the traffic load pair. 

Hence, we denote the capture probabilities in a primary and secondary cell as Pp{x, GP, Gs) 

and Ps(x,Gp,Gs), respectively (instead of Pp(x,gp(-),gs(-)) and Ps(x,gP(-),gs('))), to re- 

flect this assumption. Note that condition (C2) reflects exactly the real situation in down- 

link communication (since the base-stations themselves are not mobile). However, for uplink 

transmission, the received interference depends in general on the location of interferers. 

Thus, the capture probability in this case is determined by the traffic load distributions in 

the interfering cells, not just the aggregate values. Therefore, our assumption represents an 

approximation for uplink communication. However, our simulation results will show that 

the mismatch can be safely ignored. It should be noted that in [5], the authors made the 

same assumption and they too found the impact of the approximation to be negligible. 

Based on conditions (Cl) and (C2), our procedure for solving the optimal scheduling 

problem (3) is as follows.   First, for a given set of aggregate traffic loads GP and Gs, we 

9 



derive the optimal traffic load density pair {9p{'),9s(')}- We then obtain the overall solution 

by optimizing over the values of Gp and Gs (recall that Gp, Gs £ [0,1]). 

To proceed, we define the family {Gp, Gs} to be all traffic load density pairs {gp{-),gs(-)} 

whose aggregate values are fixed and are equal to Gp and Gs, respectively. We will next de- 

rive a necessary condition for a traffic load density pair to be optimal in the family {Gp, Gs}- 

Note that according to our simplifying assumption, if the aggregate traffic loads are fixed, 

the capture probabilities are only functions of the location in a cell. Thus, when we focus on 

the family {Gp, Gs}, we denote the capture probabilities in the primary and secondary cells 

simply by Pp and Ps, respectively. It turns out that the necessary condition for solving the 

optimization problem can then be given in the following simple form. 

Theorem 1  Given   values   of the   aggregate   traffic   loads   Gp   and  Gs,   suppose   that 

{gp{-),gs{')} ?s ^e optimal traffic load density pair in the family {Gp,Gs}-   Then, there 

exists a positive constant OLQ such that 

Pp(x) 
gp(x)    =    0, for all x such that < a0, (4) 

9s(x)    =   0, for all x such that > a®. (5) 
PS\x) 

Proof: See appendix. I 

Theorem 1 states that the optimal solution to (3) is in the form of bang-bang control, in 

the sense that the users that are scheduled for transmission in a primary cell are selected from 

regions that are completely complementary to the users that are scheduled for transmission 

in a secondary cell. Therefore, the optimal throughput density is given by 

*(  \ _ /  29*P(X)PP(X)I    for a11 x such that päS > a° (6) 

1 l9*s(x)Ps(x),     for all x such that ^j| < a0. U 

This bang-bang type of scheduling is illustrated in Figure 5. From Figure 5, we can see that 

the cell is partitioned into two complementary regions, where users in Region I are scheduled 

for transmission only in a primary cell (i.e., g*s{x) = 0, for x in Region I), while users in 

Region II are scheduled for transmission only in a secondary cell (i.e., gp(x) = 0, for x in 

Region II). For example, recall that so far we focus on carrier-set A and cell 1 is a primary 

cell. Thus, carrier A is used to serve only users in Region I of cell 1. However, when we 

consider carrier-set B, cell 1 becomes a secondary cell. From the same argument, we would 

then schedule users in Region II of cell 1 on carrier B. 

We next state an important corollary when Pp(x)/Ps(x) is monotonically increasing. 
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Figure 5: Illustration of bang-bang optimal scheduling in general cases 

Corollary 1 Suppose that PP(x)/Ps(x) is a monotonically increasing function ofx. Given 

values of the aggregate traffic loads GP and Gs, suppose that {g*P{-),g*s{-)} is the optimal 

traffic load density pair in the family {GP, Gs}- Then, there exists a number x0 € (0,1) such 

that 

gP(x)   =    0 for all x G (0,cco) 

gs(x)   =   0 for all x € (x0,1) 

(7) 

(8) 

Proof: Because PP(x)/Ps{x) is a monotonically increasing function, for any a0 given in The- 

orem 1, there exists a unique x0 such that Pp(x0)/Ps(xo) = «o- The sets {x\PP(x)/Ps(x) < 

a0} and {x\PP(x)/Ps{x) > a0} are equivalent to intervals (0,xo) and (x0,l), respectively. 

Thus, the corollary follows immediately from Theorem 1. I 

Our analysis and simulation results with standard physical layer propagation models 

show that PP(x)/Ps{x) is usually monotonically increasing. However, note that to ob- 

tain Equations (7) and (8) in the corollary, we only require that there exists x0 such that 

PP(x)/Ps{x) > a0 for all x G (x0,l), and PP(x)/Ps(x) < a0 for all x € (0,xo). The result 

of the corollary dictates that the optimal scheduling policy is to schedule only those users 

in a secondary cell that are a distance (0,x0) away from its base-station, and only those 

users in a primary cell that are a distance (x0,1) away from its base-station. This cell par- 

tition is illustrated in Figure 6. This corollary agrees with our intuition (see Figure 3) of 

scheduling "far" users at higher power in a primary cell, while "near" users at a lower power 

in a secondary cell. What the above corollary (and Theorem 1) also tells us is that even 

for the optimal scheduling policy, it may not be necessary to estimate precisely the capture 
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Figure 6: Illustration of bang-bang optimal scheduling when Pp(x)/Ps(x) is monotonically 
increasing 

probability or location of each user for implementing the primary/secondary SPC scheme. 

Instead, a rough estimate of which region a user belongs would suffice. 

4.3    Specific Choices of / and h 

Theorem 1 and Corollary 1 provide necessary conditions for the optimal scheduling prob- 

lem (3). However, to quantitatively calculate the optimal scheduling policy, we need to 

evaluate explicitly the parameter c*o and density functions gp(-) and gs(')- This means that 

the functions / and h in (3) must be explicitly defined. To illustrate the optimal scheduling 

solution, we will consider two specific cases in this section. 

4.3.1    Problem I 

Consider the following optimization problem: 

/   s(x)dx 
Jo 

maximize 
9P(-),9S(-) 

six) S\ Xl 
subject to       sup    , { — inf   , { = 0 (9) 

x     u(x) x    u(x) 

Here, u(x) is the user location density. To make our discussion meaningful, we assume 

throughout the study that u(-) is piecewise continuous and u(x) > 0 for all x G [0,1]. 

The constraint in Problem (9) reflects a uniform fairness constraint (in terms of throughput) 

among users at different locations in a cell, i.e., the optimal throughput per user is constrained 

to be a constant, which we denote by s*. 

By applying the necessary condition of Theorem 1, Problem (9) is easy to solve.   We 
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integrate Equation (6) to obtain 

/»„frM* =  \L/Ax)dx = \G'" ;io) 

,;/•   Ä,   =   '/  sSW<t = lG„ (ID 
hs Ps{x) 2 7$s 2 

where $F = {a;|Pp(a;)/Ps(x) > «o} and $s = {x|PP(x)/Ps(a;) < a0}. Here, a0 is the 

parameter described in Theorem 1 and can be determined by solving the following single- 

variable equation: 
GP Gs (12) 

hP PP(x) aX        J$s Ps(x) aX 

Now if Pp(x)/Ps{x) is a monotonically increasing function of x, Equations (10), (11) 

and (12) can be simplified further as follows: 

<ilM)dx - > (13) 

■X°^ldx   =   \GS ' (14) 
Ps{x) 4 

 9Z    =    %  (15) 
f 1     u(x)     , rx0   u{x)     , 
Jx0 PP{x) aX JO     PS(X) aX 

By solving either Equation (12) or (15), we can obtain the value of the parameter Q0 or 

x0, and then determine the optimal throughput with Equations (10) and (11) or (13) and 

(14), respectively. 

Problem (9) has been considered before in the literature, for example in [5]. In Section 5 

we will provide extensive numerical performance comparisons with other schemes for this 

problem. We now present a qualitative comparison of our primary/secondary SPC scheme 

with CDPA, which is instructive in understanding why our scheme yields a higher throughput 

for Problem (9). 

For simplicity, we consider the case where PP(x)/Ps(x) is monotonically increasing and 

assume that users are uniformly distributed in the cellular network (i.e., u(x) = f). For the 

sake of comparison with CDPA, we further restrict ourselves to the case where the aggregate 

traffic loads are the same for both primary and secondary cells,2 i.e., GP = Gs = G. It 

then follows from Equations (13)-(15) that for a given aggregate traffic load G, the optimal 

aggregate throughput of the primary/secondary SPC scheme is given by 

c* 9. . (16) 
P5
~£OPTW^ + /O*

0
P^ 

2We note that, however, GP and Gs are not necessarily the same for overall optimality in our scheme. 
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The solution of Problem (9) for CDPA can be derived similarly [5]. In fact, recall that 

CDPA can be viewed as a special case of our SPC scheme when 7 = 1 (i.e., no static power 

control). In this case, there is no difference between the primary and secondary cells, and 

Pp(x) = Ps(x). Thus, it follows immediately from the above equation that the optimal 

aggregate throughput of CDPA is given by 

G 
S*CDPA = Jo1^-^^' (17) 

where PCDPA(%) denotes the capture probability with CDPA. 

We next compare the optimal throughputs of our SPC scheme and CDPA. We have, 

1 1 
*PS       ^CDPA     ~     ^Ui   _J^d+  r*o_^dx-   fl 1 dJ 

Jxo PP(x) aX + JO     PS(X) aX        Jo  PCDPA{x) aX 

_      C
J

XO\PCDPA(X) Pp{x))aX        JO    \Ps{x) PcDPA{x)>aX 

(Ä PPJX) 
dx + fo° rfc dx){ti p-1^ dx) 

C* Q* '■ f1  ( I !_WT -   fXo(      l       - * Ut ÜPS - dCDPA     _     )XO^PCDPA(X)       PP(X)J
UX

      Jo   yps(x)       PCDPA{X)> 
C* r\ 1 
PS JO  PcDPA{x)dx 

(18) 

For illustration, in Figure 7, we plot the reciprocal of the capture probabilities Pp, Ps, 

and PCDPA versus the distance to the base-station. From Equation (18), it follows that the 

relative improvement in optimal throughput of the SPC scheme over CDPA (with respect 

to SpS) is equal to the relative difference between the following two areas Ap and As (with 

respect to the area under the curve of 1/PCDPA(X),X 6 [0,1]): 

AP   =        (— -—- - )dx 
Jx0 PCDPA{X)     Pp{x) 

A   
A
  r\ l 1    \J As   —    /    ( ^ , ■,—^ 7—-) ax. 

Jo   yPs(x)     PCDPA{XY 

Qualitatively, since a reduced power is used in a secondary cell, the capture probability is 

lower with the SPC scheme than with CDPA, and the area As reflects the associated loss 

in throughput. On the other hand, the SPC scheme achieves better capture probability 

in a primary cell, and the gain is quantified by the area Ap. Note that in the wireless 

propagation environment, the capture probability drops quickly with the distance to the 

base-station. Hence, the gain in the interval [x0,1] is generally larger than the loss in the 

interval [0,xo], and therefore the SPC scheme can achieve a higher throughput than CDPA. 
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Figure 7: Qualitative comparsion of SPC scheme and CDPA 

4.3.2    Problem II 

In this section, we consider the following optimization problem with a more general fairness 

constraint: 

maximize 
gp(-),9s(-) 

subject to       sup 

/   s(x) dx 
Jo 

s(x) „ s(x)   ^    (       six) 
- inf 44 < c   sup   v  ' (19) 

x    u(x) x    U(X) \   x    U(X)J 

when c G [0,1] is a positive number. Note that the discussion in this section is also applicable 

to the optimization problem when the constraint is, instead, sup^ ^gj - inf* fgj < c. Also 

note that when c = 0, Problem (19) reduces to Problem (9). In this problem, we attempt to 

maximize the overall throughput, under the constraint that the relative difference between 

the maximum and minimum throughout per user is bounded by c. 

Similar to Section 4.3.1, we next calculate the optimal traffic load in the family {GP, Gs}- 

It turns out that the optimal throughput per user of Problem (19), s*(-), can take only one 

of two discrete values, as stated in the following theorem. 

Theorem 2 There exist two positive numbers ßP and ßs, and two positive constants si and 

52, Si > s2> such that the optimal throughput per user of Problem (19) satisfies 

<(*) = 

A 
5l5 for all x £llpi = {x e$p\Pp(x)> ßp} 

52, for all x elip2 = {x e $p\Pp(x) < ßP} 

su    for allx   ellsi = {x £$s\Pp{x)> ßs} 
(20) 

52,     for all x   e n52 = {x G ®s\Pp{x) < ßs} 

where $P = {x\PP{x)/Ps(x) > a0} and $s = {x\PP(x)/Ps(x) < a0}, and aQ is the param- 

eter described in Theorem 1. 
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Figure 8: Illustration of two-level bang-bang optimal scheduling for Problem 19 

Proof: See Appendix B. 

Recall that the necessary condition (Theorem 1) partitions the cell into two complemen- 

tary regions, which are served in the primary and secondary cell, respectively. Theorem 2 

states that the two regions are further partitioned into four distinct subregions, in each of 

which the optimal throughput per user of Problem (19) remains constant. We illustrate this 

two-level bang-bang control in Figure 8, for the case where Pp(x)/Ps(x) is monotonically 

increasing and Pp(x) and Ps{x) are themselves monotonically decreasing. 

Based on Theorem 2, we can quantitatively determine the optimal scheduling scheme in 

the family {GP,Gs}. Recall that s*(x) = \gP(x)PP{x), for x <E $p ands*(x) = ^g*s(x)Ps(x), 

for x € $s- Therefore, 

9*s(x) 

9*P(
X

) 

2s2u(x)/ps{x), x e nS2 

2s1u{x)/Ps(x), x € n51 

2s2u(x)/Pp(x), x € IIp2 
2siu(x)/Pp(x)J x £ Hpi 

The key problem here is to calculate Si, s2, and the cell partition ILpi, Hp2, H-si, and 

rts2, which are completely determined by the parameters a0, ßp, and ßs- Hence, we can 

determine the optimal schedule for Problem (19) by solving the following simple parametric 

optimization problem: 

maximize 
°to,ßp,ßs<si,*2 

subject to       5i 

Sj ( /      u(x) dx + u(x) dx ) + s2 ( /      u(x) dx + u(x) dx 
\JnP1 Jusl J \JnP2 JnS2 

L 
i 

Jnsl Ps(x) 

u(x)    . f      u(x) 

°P(X) JnP2 PP(xJ 

u(x)    , f      u(x) 

JnS2 Ps{x) 

■ dx 

dx - 

(21) 
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Si — s2 = es i 

Note that unlike the functional optimization problem given by (19), the above parametric 

optimization problem is easy to solve. For the special case where Pp(x)/Ps(x) is monotoni- 

cally increasing, and PP(x) and Ps(x) are monotonically decreasing, the form of the above 

optimization problem can further be simplified to: 

fxo /"l 

maximize       S\ P u(x) dx + P u(x) dx) + s2 (J ° u(x) dx + j   u(x) dx ^ 

t*i   u(x)    , f1   u(x) 1 /00x 
subject to       Si /     —VT dx + s2      -^-p-r dx = -GP \M) J JX0   Pp(x) Jx2 Pp{x) 4 

pi  u(x)   , fXo  u(x)   ,        1 „ 

Jo    Ps(x) Jxi   Ps{x) 4 
5i — 52 = CSi 

0 < Xi  < X0 < X2 < 1 

5    Performance Evaluation for the Linear Cellular Sys- 
tem 

In this section, we evaluate the performance of our primary/secondary scheme via both 

numerical analysis and simulation, and compare it with the CDPA and TDMA schemes. 

We consider a standard propagation model for performance evaluation that takes into 

account Rayleigh fading, lognormal shadowing, and 77-th power path loss. Specifically, the 

power WR (at the receiver), received from a transmitter located at a distance x away, is 

given by 

WR = a2l0ouAx^WT. (23) 

Here, a2 is an exponentially distributed random variable with unit mean, £ is a Gaussian 

random variable with zero mean and variance a2, Ax~v accounts for the path loss and 

antenna gain, and WT is the transmitted power, which takes the normalized value of either 

1 or 7, depending on the primary/secondary designation of the cell. The propagation loss 

exponent, 77, typically takes values close to 4 [23], and the shadowing parameter, a, ranges 

from 5 to 12 dB [20]. As in [5], we assume for simplicity that packet transmissions in different 

cells are synchronized on a common time-slotted basis, so that transmissions in different cells 

overlap completely. 
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5.1    Analysis Model 

The analytical method for determining the optimal schedule of the primary/secondary SPC 

scheme is as follows. First, for a given set of Gp and Gs, we compute the capture probabilities 

Pp(-) and Ps(-)- Specifically, we focus on an arbitrary cell, called "cell 0". Let the index 

"0" denote the intended signal in cell 0, and index "i" denote interference from cell i. Based 

on the propagation model (Equation (23)) and the capture model (Equation (1)), we can 

calculate the capture probability as follows: 

p[Xo) ~   \El:even^oxr^ioo^Axr+zt:oääxf^io^Axr1
> )   (24) 

S{X0)
   ~       I Ei:even^o xfctW-KAxfi + E,,dd Xfa?10°-^Ax? >   J '      ( 5) 

Here, x0 is the distance from the intended mobile user to the base-station in cell 0, and 

Xi is the propagation distance associated with cell i. The binary random variables xf 

and xf indicate whether or not a transmission occurs in cell i when the cell is primary 

and secondary, respectively: xf = 1 (with probability Gp), or xf — 1 (with probability 

Gs), if a transmission occurs. For downlink communication, a;,- is the distance between 

the intended mobile user and the base-station of cell i, which is determined by x0. For 

uplink communication, a;,- is the distance between the transmitter in cell i and the base- 

station in cell 0, which is independent of XQ. In our numerical analysis, we assume that 

Xi is uniformly distributed in cell i. However, as we discussed previously in Section 4.2, 

this uniform assumption represents an approximation in the uplink case, since generally the 

optimal traffic load is not uniform. We will investigate the impact of this approximation by 

comparing the analysis and simulation results in Section 5.3.2. 

We employ numerical integration methods to evaluate Equations (24) and (25). Since 

a] is an exponentially distributed random variable, Equation (24) can be simplified to (see 

[24]): 

Pp(xo) = 1~E {JL i+6xfio°-'«.-<»w*o)-, n r 
1 

+ bxfio0-l^-^Kxi/x0)-v .^ i + bx?io°-m-to)(Xi/Xoy^ 

Thus, for downlink communication, 

1 

1 + bxf 10°-1te-fr)(si£ai)-'> 

1 

£o 

l + 6xfl0°-1(^-«o)(Äi)-^7 
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=   i _ E I  FT   I 1 - GPE J *° 
1 +6l0°-1(^-«o)(£ii£ol)-'j 

n 11 - r F^        v a° y 

ÜA 5    ll + 610o.K^o)(^)-,7 

io 

Here, we use the notation a^&o) to indicate that x{ is completely determined by x0. For some 

function h of two random variables X and F, we use the notation E{h(X, Y)\Y} to represent 

the conditional expectation of h(X,Y) given Y: E{h(X,Y)\Y} = f h(x,Y)dFx(x), where 

Fx(-) is the distribution function of X. 

For uplink communication, 

610°-1(«.-6>)(s.')-'? 

Pp(x0)   =    1 - ^ {  II   ( ! - G^ ^ i + &i0o.itt.-&)(£L)-i 

6l0o.i«,-Co)(a.)-^7 

n i - GpE 
i:odd  \ I ^o.' 

l + 6lOO-1«i-€o)(s.)-^7 

We can similarly evaluate Ps(x0) for downlink and uplink communication. 

Once Pp(-) and Ps(-) are available, we calculate the optimal traffic load pair {gP(-),gs(')} 

in the family {GP,GS}, based on the necessary condition (Theorem 1). In particular, we 

can solve the optimal pair {#£(•)>$?(•)} from the single-variable Equations (10)-(12) (or 

Equations (13)-(15)) for Problem (9). Finally, we obtain the overall optimal solution by 

enumerating the values of Gp and Gs from 0 to 1. 

5.2    Simulation Model 

We verify the numerical analysis results by comparing them with simulations. Note that in 

our analysis, the only performance measure that we have taken into account is the through- 

put. However, as noted previously, because of capture failure and packet retransmission, de- 

lay is also an important performance measure of the capture-based spectrum, reuse method. 

In our simulation, we also will investigate the delay due to retransmissions. 

Our simulation model of the linear cellular system consists of 10 cells arranged linearly, 

where each cell has two adjacent cells. The boundary cells on the two sides are then connected 

to each other to avoid the "edge effect" at the boundaries. In each cell there are 200 equally- 

spaced points, and mobile users in the cell are located at those points. In the simulation, 

packets are transmitted in the cellular system as follows. For uplink communication, during 

any time-slot one new packet is generated at a point t, independently of packets generated 

at point j ^ t, with probability Si. Let S = £?™ S% be the aggregate new packet arrival 

rate, which is equal to the aggregate throughput if the system is stable. New packets, after 

19 



arrival, are queued at the corresponding points. We assume that by some request signaling, 

the base-station is notified immediately as soon as a new packet arrives at any point. In 

other words, the base-station is always aware of the queue length at each point in the cell. In 

any time-slot, the base-station first decides whether to transmit during that time-slot, with 

a permission probability ß. If so, it selects a user at one point in the cell, according to a 

scheduling algorithm and the resulting cell partitioning (i.e., the bang-bang control shown in 

Figure 6), and then instructs the user to transmit a packet in the corresponding queue. The 

above probabilistic permission scheme is used to avoid congestion, as will be explained later 

in Section 5.3.1. We use the following probabilistic scheduling algorithm for the base-station 

to select one of the points in the cell. Suppose that in any time-slot, the queue lengths at 

all points are #;, i — 1,..., 200. Then, in a primary (secondary) cell, the probability that 

point i in Region I (Region II) is selected is $/ J2i Qi-, where the summation is taken over all 

points in Region I (Region II). 

For downlink communication, the base-station of each cell maintains distinct queues for 

different points in the cell. In any time-slot, one new packet is added into the queue of point 

i, independently of each other,3 with probability Si, as in the uplink communication case. 

In any time-slot, the base-station first decides whether to transmit during that time-slot, 

with some given permission probability. If so, it then selects one point in the cell, according 

to a scheduling algorithm (e.g., the probabilistic algorithm described above) and the cell 

partition of the primary/secondary cell, and transmits a packet in the corresponding queue. 

For both downlink and uplink communication, all transmissions in the cellular system 

are examined at the receivers, each of which checks Equation (1) to determine whether 

capture occurs based on the propagation model given in Equation (23). If capture occurs, 

the transmitted packet is removed from the queue at the point; otherwise, it remains in the 

queue, waiting for the next transmission opportunity. 

5.3    Numerical Results 

In our numerical analysis and simulation, we use the following parameters: 77 = 4, a = 6 dB. 

The static power control parameter is 7 = 0.1. We assume that mobile users are distributed 

uniformly in a cell, i.e., u(x) = |. When we check whether capture occurs, we take into 

account interference from four closest neighboring cells (i.e., two immediately adjacent, and 

two next-to-immediately adjacent cells). We find that the impact of interference from farther 

3Here we allow multiple new packets to arrive at the same base-station during the same time-slot, to 
simulate the common scenario where the base-station simultaneously maintains multiple connections to the 
fixed network and the transmission rate in the wired link is much faster than in the wireless link. 
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cells is negligible. As discussed previously in Section 2, the capture ratio 6 is an important 

parameter that reflects the physical layer requirement for reliable communication, such as 

the requirement on bit error rate (BER) or outage probability. In this study, we consider 

three scenarios, b = 6, 10, and 15 dB, to represent various technologies in current and future 

wireless systems. 

We compare our primary/secondary SPC scheme with both CDPA and TDMA for differ- 

ent values of the capture ratio. Since CDPA can be viewed as a simplified version of the SPC 

scheme with GP = Gs = G and 7 = 1, the methods of numerical analysis and simulation 

for CDPA are similar to what have been described for the SPC scheme. Strictly speaking, 

in standard TDMA, we have to adjust the reuse distance (and reuse factor) for different 

values of the capture ratio. However, here we consider packet-switched TDMA, which does 

not maintain continuous connections and allows packet retransmission, in contrast with the 

circuit-switched case. We set the reuse factor to 2 (hence, the packet-switched TDMA sys- 

tem that we study here is almost the same as CDPA, except that every other cell, instead of 

all cells, are allowed to transmit in any time-slot). Note that if the standard circuit-switched 

TDMA is used, since no collisions are permitted, it would require a reuse factor strictly 

larger than 2, and hence the maximum throughput would be less than 1/3. However, we 

find that in all our numerical results, the throughput of the packet-switched TDMA system 

that we use exceeds 0.4. Therefore, our comparison is with a fairer (and better in terms of 

throughput) version of TDMA. 

5.3.1    Maximum Throughput with the Uniform Fairness Constraint 

In this section, we investigate Problem (9) via numerical analysis. Specifically, we consider 

the uniform fairness constraint, i.e., the throughput remains the same for users at different 

locations in a cell. For a set of aggregate traffic loads GP and Gs in the SPC scheme, we 

calculate the overall throughput S using Equation (16). By varying GP and Gs from 0 to 1, 

we obtain the overall optimal throughput for the SPC scheme. We can similarly investigate 

the optimal throughputs for CDPA and TDMA, using Equation (17). Note that for TDMA, 

the numerator of Equation (17) should be changed to f, instead of G, due to time-slot 

subdivision with reuse factor 2. 

Figure 9 plots S versus G for downlink communication in CDPA and TDMA, with 6 = 6, 

10, and 15 dB. Figure 10 plots downlink S versus GP and Gs in the SPC scheme when 6=6, 

10, and 15 dB. 

We find that when 6 = 6 dB, because capture occurs relatively easily, CDPA achieves 

better throughput than TDMA. However, the SPC scheme outperforms TDMA by 85% and 
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Figure 9: Plot of downlink optimization for Problem (9) with CDPA and TDMA 

CDPA by 35% in terms of maximum throughput. 

If we increase the capture ratio to 10 dB, the throughput curve of CDPA reaches a 

maximum for G < 1. This indicates that CDPA suffers congestion because of excessive 

intercellular interference. In reality, to avoid congestion and instability, we have to ensure 

that G does not exceed the maximum point. To limit the aggregate traffic load, in our 

simulation the base-station uses the probabilistic permission scheme to decide whether to 

transmit—if a user is scheduled for transmission, it transmits with a given fixed permission 

probability. From Figure 9, it is clear that at b = 10 dB, the improvement of CDPA over 

TDMA is marginal. However, the SPC scheme outperforms both by more than 50% in 

terms of maximum throughput. An interesting observation is that the throughput surface 

shown in Figure 10(b) reaches the maximum point at Gp = 1 and Gs = 1. Thus we can 

see that although spectrum is reused in all cells in our SPC scheme, the same as in CDPA, 

the interference is reduced, and the power control scheme significantly improves the capture 

probability. 

If we further increase the capture ratio to 15 dB, the excessive interference dramatically 

reduces the throughout in CDPA, which performs even worse than TDMA in this case. Note 

that in the SPC scheme, the maximum throughput also is not reached at that point where 

Gp — 1 and Gs = 1, indicating that many retransmissions may occur even with the static 

power control scheme. From Figure 10(c), we find that the SPC scheme outperforms TDMA 

by 26% and CDPA by 60% in terms of maximum throughput. 

Similarly, we compare the throughput performance for the uplink communication, and 

find that the results are similar. We summarize the maximum throughputs, for both uplink 

and downlink communication, of the SPC scheme, CDPA and TDMA for different values of 

the capture ratio in Table 1. 

22 



\   ~~~~ 0.9 

\>- .;> 

0.8. 

0.7. 

0.6. 
10 0.5. 

0.4. 

0.3. 

7^> 0.2 „ 

Figure 10: Plot of downlink optimization for Problem (9) with SPC scheme: (a) b = 6 dB, 

(b) b = 10 dB and (c) b = 15 dB. 

5.3.2    Throughput-Delay Tradeoff with Uniform Fairness Constraint 

In this section, we provide simulation results to verify the analysis presented in Section 5.3.1, 

especially for the results in uplink communication, which were derived based on the simpli- 

fying assumption made in Section 4.2. 

Recall that from Table 1, in uplink communication, the SPC scheme can achieve maxi- 

mum throughputs of 0.90, 0.81, and 0.62 with b = 6, 10, and 15 dB, respectively, for Prob- 

lem (9). Through simulations, we find that the SPC scheme can in fact achieve throughputs 

that are close to these predicted maximum values. However, the associated delays can be 

large. We observe similar phenomena with both CDPA and TDM A, and also in downlink 

communication. 

To make the comparisons more meaningful, we next investigate the throughput-delay 

tradeoff. Specifically, for a given new packet arrival rate S (which is equal to the throughput 

in a stable system), we estimate the expected delay D in terms of time-slots that a packet 

experiences from the instant of arrival to the instant when the packet is successfully received. 

This figure includes both queueing delay and retransmissions. To maintain uniform through- 

put in a cell, the new packet arrival rate at any point is given by Si = 5/200- Since we are 
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Downlink Uplink 
Capture ratio 6=6 dB 6 = 10 dB 6 = 15 dB 6 = 6 dB 6= 10 dB 6 = 15 dB 
SPC 0.88 0.73 0.51 0.90 0.81 0.62 
CDPA 0.66 0.49 0.36 0.80 0.65 0.41 
TDMA 0.49 0.48 0.46 0.50 0.49 0.47 

Table 1:  A Comparison of the maximum achievable throughput using CDPA, TDMA and 
the SPC scheme 

0.4    0.45   0.5    0.55   0.6    0.65   0.7    0.75   0.8    0.85   0.9 
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Throughput 

(b)b=10dB 
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TDMA 
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(c)b=15dB Legend 

Figure 11:  Downlink throughput-delay tradeoff comparison:  (a) 6 = 6 dB, (b) 6 
and (c) 6 = 6 dB (d) Legend. 

10 dB 

interested in the performance of a typical cell, the statistics obtained are averaged over all 

cells. 

The probabilistic permission scheduling method is used in the simulation to control con- 

gestion in CDPA and the SPC scheme, as discussed in Section 5.3.1. The value of the 

permission probability is set to be the aggregate traffic load(s) that achieves the maximum 

throughput in the numerical analysis of Problem (9). For example, with 6 = 15 dB in down- 

link communication, the permission probability is equal to 1 or 0.5 during the primary or 

secondary period, respectively, in the SPC scheme (see Figure 10(c)). 

We calculate the cell partitioning parameter XQ by solving Problem (9), and use this 

parameter in the simulation of the SPC scheme to obtain the individual curves in Figure 11. 
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Capture ratio 
Delay constraint (time-slots) 

SPC 
CDPA 
TDMA 

6 = 6 dB 
10 

0.80 
0.75 
0.45 

10d 

0.90 
0.80 
0.50 

b = 10 dB 
10 

0.72 
0.57 
0.44 

10d 

0.80 
0.62 
0.49 

15 dB 
10 

0.55 
0.36 
0.41 

10d 

0.62 
0.40 
0.46 

Table 2:  A comparison of uplink throughput-delay tradeoff using CDPA, TDMA and the 

SPC scheme. 

In Figure 11(a) we show the expected delay versus throughput for the SPC scheme, 

CDPA, and TDMA, in downlink communication with b = 6 dB. All three curves show that 

the delay increases with the throughput. In particular, the delay rises rapidly when the 

throughput approaches the maximum value, a common phenomenon in queueing theory. 

The maximum value of the throughput observed in the simulation given by Figuresll(a)-(c) 

(i.e, the throughputs close to the asymptotic values of the delays in these curves) is very 

close to that obtained in the analysis (given by Table 1), for all three schemes. We find that 

the delays due to retransmission can be quite low with both the SPC scheme and CDPA, as 

long as we operate slightly (typically 5%) under the maximum value. For a fixed expected 

delay, say 10 time-slots, we compare the associated throughput of the three schemes, and 

find that the SPC scheme outperforms TDMA by 80% and CDPA by 30%. 

In Figure 11(b), we show the expected delay versus throughput curves in downlink com- 

munication with b = 10 dB. It can be seen that the throughput-delay curves with CDPA and 

TDMA are very close. This is not surprising since the numerical analysis showed that the 

maximum achievable throughput with CDPA and TDMA are almost the same (see Table 1). 

For an expected delay of 10 time-slots, the SPC scheme outperforms TDMA by 55% and 

CDPA by 50%. 

In Figure 11(c), we show the expected delay versus throughput in downlink communi- 

cation with b = 15 dB. In this case, TDMA actually outperforms CDPA, which is again 

consistent with the observation from the analytical results in Table 1. For the expected 

delay of 10 time-slots, the SPC scheme outperforms TDMA by 17% and CDPA by 47%. 

We also compare the expected delay versus throughput in uplink communication. To 

save space, we summarize the simulation results in Table 2. Detailed curves can be found in 

[15]. We find that the performance in uplink communication is similar to that in downlink 

communication, and is consistent with the analysis in Section 5.3.1. In particular, the 

maximum value observed in simulation is close to that obtained via analysis, for all three 

schemes and all the choices of b. This indicates that the simplifying assumption made in 

Section 4.2 and in [5] seems reasonable. 
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Figure 12: Aggregate throughput with nonuniform fairness constraint 

5.3.3    Aggregate Throughput with Nonuniform Fairness Constraint 

In all the above numerical examples, we have considered the uniform fairness constraint, 

which is a typical fairness constraint considered in the literature. However, in' reality we 

may want to relax a strict fairness constraint to increase the overall throughput in the 

system. Here, we investigate the performance improvements with a nonuniform fairness 

constraint. Specifically, we consider Problem (19). We analytically determine the optimal 

aggregate throughput by solving the parametric optimization problem (21), when c, the 

relative difference between the maximum and minimum throughputs, varies from 0% to 

70%. In Figure 12, we plot the optimal aggregate throughput versus c for 6 = 6, 10, and 

15 dB, in downlink and uplink communication respectively. As we expect, further gains in 

throughput are obtained by allowing nonuniformness in the constraint, especially when b is 

large. 

6    An Extension to the Planar (2-D) Case 

So far, we have explored the primary/secondary SPC scheme for the linear cellular network. 

In this section, we extend the same idea to the 2-D hexagonal configuration. 

Recall that in the linear case, users are scheduled for transmission in complementary 

locations in the primary and secondary cells. In the linear system, the location of a user 

is characterized by its distance to the base-station and thus can be estimated, for example, 

by measuring and taking the average of signal powers in previous transmissions (assuming 

that the user location does not change rapidly compared to the random fluctuation in the 

propagation conditions such as fading and shadowing). In this section, we develop a heuristic 

26 



Primary Cell 
■ / 
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Figure 13: Primary/secondary Scheduling Scheme in 2-D Case 

static power control scheme for the 2-D case based on our understanding of the optimal 

solution derived for the linear case. 

In our 2-D scheme, primary and secondary carriers are assigned as follows. We partition 

all the carriers in the system into three distinct sets. Cells are also partitioned into three 

sets, such that every one set of cells are assigned one carrier-set as primary carriers and the 

remaining two sets as secondary carriers. 

Our heuristic scheduling scheme is as follows. In each cell, users within a distance x0 

away from the base-station are scheduled for transmission only in a secondary cell, while 

users in the remaining region of the cell are scheduled for transmission only in a primary 

cell, as shown in Figure 13. The parameter x0 indicates the service coverage in the secondary 

cell when the reduced power -yWr is employed, which is an important design parameter for 

balancing the traffic loads in the primary and secondary cells. We adopt the probabilistic 

scheduling method with permission probabilities ßP and ßs in the primary and secondary 

cells, respectively, to avoid excessive packet retransmission and capture failure, as described 

in Section 5. 

We next investigate the performance of this heuristic scheduling scheme, and compare it 

with both TDMA and CDPA. In particular, we consider the following optimization problem 

for the SPC scheme: 

minimize       D 
l,xo,ßp,ßs 

subject to      s(x,y) — -— (26) 
Acell 

where D is the expected delay, and s(x,y) is the throughput density at a location having 

coordinates (x,y) in the plane. The quantity AcM represents the area of a cell, while S 

is the aggregate new packet arrival rate (throughput). This constraint requires that the 

new packet arrival density be uniform in the cell. Note that in CDPA there is no difference 

between the primary and secondary cells, and there is no cell partition. Thus, we have 7 = 1, 
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Downlink 
Capture ratio 6 = 6 dB 6= 10 dB b = 15 dB 
Delay constraint (time-slots) 40 103 40 103 40 103 

SPC 0.413 0.437 0.294 0.303 0.152 0.158 
CDPA 0.287 0.299 0.173 0.180 0.096 0.103 
TDMA 0.291 0.313 0.251 0.258 0.151 0.153 

Up] ink 
SPC 0.444 0.466 0.302 0.316 0.161 0.172 
CDPA 0.326 0.330 0.177 0.187 0.096 0.103 
TDMA 0.292 0.306 0.253 0.265 0.161 0.172 

Table 3: A comparison of throughput-Delay tradeoff in the 2-D case using CDPA, TDMA 
and the SPC scheme. 

ßp = ßs — ß-, and the parameter x0 does not appear in the CDPA algorithm. Therefore, a 

similar optimization problem is defined for the CDPA by replacing 7,a;o,/3p,/3s by ß. For 

the TDMA, we simply set 7 = 0, x0 = 0, ßp = 1, and ßs = 0, and there is no need to 

optimize any parameter. 

We conduct the performance evaluation via simulation. The simulation is similar to that 

in the linear case described in Section 5. In our simulation, we use the following parameters 

for the wireless propagation model: 77 = 4, a = 6 dB. 

The throughput-delay tradeoff curves in the 2-D case are similar to these in Figure 11. 

To save space, we summarize those simulation results in Table 3, where we provide the 

throughput of CDPA, TDMA, and the SPC scheme, when the resultant delay is 40 or 1000 

time-slots, and 6 = 6, 10, and 15 dB, respectively. We next make some observations for the 

downlink case. Similar observations can be made for the uplink case. 

We observe that the performances of CDPA and TDMA are quite close with 6 = 6. For a 

given expected delay requirement, say 40 time-slots, the SPC scheme has a 40% throughput 

gain over both CDPA and TDMA. It is interesting to recall that we had a similar observation 

in the linear case, but with 6 = 10 dB there. 

In the case of 6 = 10 dB, it can be seen that CDPA indeed performs the worst among the 

three schemes. This agrees with the results in [5] where it was shown that TDMA, with reuse 

factor 3, can outperform CDPA when 6 = 10 dB. For the expected delay of 40 time-slots, 

the SPC scheme has 17% throughput gain over TDMA. 

When the capture ratio is increased to 6 = 15 dB. We find that CDPA performs much 

worse than the SPC and TDMA schemes. It is interesting to note that the throughput gain 

of the SPC scheme over TDMA is relatively small. This is because with such a stringent 

capture ratio requirement of 6 = 15 dB, we have to choose a very low power parameter 7 
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which in turn results in a very small coverage x0 of the secondary cell. Hence, there are very 

few users that can take the advantage of transmissions in the secondary cells in this case. 

7    Conclusion 

We have presented a static power control scheme in packet-switched wireless systems. Our 

basic idea is to reduce intercellular interference and improve the capture probability by set- 

ting the transmission powers of users of different cells in an optimal fashion. The assignment 

of powers is determined beforehand and no real-time intercellular coordination is required. 

The power control is static and fixed, leading to simplicity in implementation. 

We have formulated and solved an optimal scheduling problem for our SPC scheme. We 

find that the optimal scheduling policy is in a simple form of bang-bang control: each cell is 

partitioned so that users in different regions are served with different levels of transmission 

power. We illustrate our scheduling solution by considering two specific cases with uniform 

and nonuniform fairness constraints. 

We have evaluated, via numerical analysis and simulation, two important performance 

measures of the SPC scheme, throughput and delay, and compared them with both CDPA 

and TDMA. We find that the SPC scheme can achieve significant performance improvements, 

in terms of both maximum throughput and throughput-delay tradeoff, over a wide range of 

the capture ratio values. 

APPENDIX 

A    Proof of Theorem 1 

To prove Theorem 1, we need the following two lemmas. 

Lemma 1 Let{gP{-),gs{-)} be a traffic load density pair in the family {GP,GS}, and s(-) the 

associated throughput density function. Suppose that s'(-) is another throughput density that 

satisfies the constraint h(s'{-)) > 0 and there exists a subset $ C [0,1] such that s(x) > s'(x) 

for all x e $; and s(x) = s'(x) for all x G [0,1] \ $. Then there exists another traffic 

load pair, {gp(-),gs{-)}, also in the family {GP,GS}, such that the resultant throughput s(-) 

satisfies h(s(-)) > 0 and /(s(-)) > /(«'(•))• 

Proof: We prove this lemma by construction. Let gP(-) and gs(-) be constructed as follows: 

9P{X)   =   gp{x)7^ + m ß_^_dx , (27) 
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s'(x)   .       1     f*9s(x)(l-'-M)d X 
gs(x)   =   gs(xy-f^+     ]     *"*"'" 1     f

]'      . (28) 
s(x)      Ps(x) fopjfödx 

To show that the above traffic load pair suffices for our purpose, we need to: (1) show 

that it belongs to the family {Gp, Gs}; and (2) check the resultant throughput. To this end, 

note that 

1     , ,s'(x) ,    .   /-i     1      ,   Ugp(x)(l-'-$)dx 
/   gp(x)dx   =    /   gP{x)"-—-dx + 

Jo Jo six) Jo 
dx 

s(x) Jo   PP{x) ß-1—dx 

f1     ,  ^\x)  ,        f      .  ..       s'tx).  , 
=    /   gP(x)-)-!-dx + / gP(x)(l - -f-;)dx 

Jo s(x) J$ s(x) 

f1        /    ^S'(X)    i f1        /    w-, s'(x)^    , 

=    /   gp(x)dx 
Jo 
GP 

2 ' 

Similarly it can be shown that $ gs(x) dx = ^f-. Thus, {gp(-),gs{-)} belongs to the family 

{Gp,Gs}- We next calculate the resultant throughput s(x): 

*,   ^ l  (     /   ^'(x)n ,   ^      ^ 9P{X){1 - s-^) dx 5'(x) 

; J«gsW(l-^)<fa' 

JO   P^)"X 

-   ^ + 1 ^^K1-^)^  .  U9s(x)(l-^)dx\ 
z  \ Jo Pp{x) ax Jo ps(x) ax J 

Note that the last two terms in Equation (29) are positive constants, since 1 — ?4^t > 0 

for x € $• From condition (Cl), it follows that h(s(-)) > 0 and /(s(-)) > f(s'(-)). I 

Lemma 2 Le/; $i,$2 &e £wo subsets of [0,1] satisfying 

sup £M <  inf MEl (30) 

Suppose that {gp(-),gs(')} is a t'raffic l°ad pair in the family {Gp,Gs} such that 

inf-ce$1 gp(x) > 0, and mfxe$2 gs(x) > 0. Then there exists another traffic load pair 

{g'p{-),g's(')} in the family {Gp, Gs}, such that the resultant throughput satisfies s'(x) > s(x) 

for all x G $2 and s'(x) = s(x) elsewhere. 
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Proof: We prove this lemma by construction. First, for x € [0,1] \ ($1 U $2), we simply set 

g'p(x) = gP(x) and g's{x) = gs(x). For x € $1, we "perturb" $rP(:r) and </.s(:r) as follows: 

#P(Z)    =   9P(X) - 0gp(x), 

g'six)   =   gs(x) + Ags(x), 

with 0 < 9 < 1 is a constant, and A#s(a;) > 0. To maintain s'(x) = s(x) for x G $i, we set 

A^5(x) = ^M^P(^)- 
We wil1 determine 0 later. 

Meanwhile,  to keep the new traffic load  within the family  {Gp,Gs},  we can set 

gP{x),g's(x) for x € $2 as follows: 

S-pO)   =   Pp(aj) + AP 

tfsW   =   gs(x)-As 

where Ap and As are two constants given by 

Ap   =   9 

As   =   9 

U2
dz 

Since infxG$1 gP(x) > 0 and inf*^ gs(x) > 0, we can always find sufficiently small 9 such 

that g'P(x) > 0 for x G $1, and g's(x) > 0 for 3 <E $2-  Thus, this new traffic load pair is 

valid. 

Now, we need to show that for any x €  $2, the resultant throughput s'(x) satisfies 

s'(x) > s(x). Note that for x <E $2, we have 

ApPp(x)    = ]$, gp{z)dz Pp{x) 

AsPS(x) /4l Pp(z)/Ps(z)gp(z)dz Ps(x) 

 J$1 gp(*)<k PA*) 
-    supze$l (PP(^)/PS(^)) J$1 gp(z)dz Ps(x) 

> 1, 

where the last inequality follows immediately from Equation (30). Thus, for any x G $2, we 

have s'(x) > s(x). ' 

Lemma 2 provides an insight on the result of Theorem 1. Note that in the pri- 

mary/secondary SPC scheme, the transmission power in a secondary cell is lower than that 

in a primary cell. Thus, in general, capture is more likely to occur in a primary cell. However, 
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the quantitative difference between Pp(x) and Ps(x) may vary for different locations x, and 

the optimal schedule can be achieved by intelligently distributing traffic load in the primary 

and secondary cells. From the proof of Lemma 2, we know that Pp(x)/Ps(x), the ratio of 

the capture probabilities, plays a key role in determining the optimal schedule. Consider 

two scheduling policies that have the same value of the aggregate traffic load and only differ 

in two distinct intervals A and B. If the ratio of capture probabilities are always higher in 

interval A than in interval B, then scheduling more traffic in interval A in a primary cell and 

more traffic in interval B in a secondary cell yields higher throughput. Repetitively applying 

this observation eventually leads to the bang-bang control form of the optimal schedule. 

We are now ready to prove Theorem 1. 

Proof of Theorem 1: Let 

«i    =   sup{a|öp(a;) = 0 for all x such that   ^ .  .  < a} 1   i^v  ) ps^ i 

a2    =   inf{a;|(75(a;) = 0 for all x such that > a}. 

If ai > Q2, then the theorem is already proven by arbitrarily choosing a0 £ [a^cni]. 

Let the resultant throughput density of the optimal traffic load pair {gp(-),9s(')} De s*(')- 

We next show, by contradiction, that «i can never be less than a2. Assume that a^ < a2. 

By definition, we can choose two sufficiently small positive numbers ei and e2 satisfying 

c*i + ei < a.2 — £-2-, and there exist Ri, R2 € [0,1] such that gP(Ri) > 0, p
pLv < a\ + ei, and 

9s(R2)>0,^>a2-e2. 

Since gp(-), g§(')■> and ^44 are piecewise continuous on [0,1], we can find two intervals $i 

and $2, covering #i and R2 respectively, such that inf^jg^j gP{x\) > 0, mfX2e$2 gg(x2) > 0, 

and sup;Eie$i p4f4 < inf^e^ /Z \ • Then by Lemma 2, there exists another traffic load 

pair {g'p(-),g's(-)}, also in the family {Gp,Gs}, that results in a throughput which is equal 

to s*(x) everywhere, except on $2 where the new throughput is higher than s*(x). Further, 

by Lemma 1, we can find another traffic load pair {g'p(-),g's(')}■, also in the family {Gp, Gs}, 

that results in a throughput function s'(-) which satisfies the constraint and has a higher value 

of the objective function. This contradicts the premise that £*(•) is the optimal throughput. 

B     Proof of Theorem 2 

Let {gp(-),gs(')} denote the optimal traffic load pair of Problem (19). Define sx = sup^ 5*(x), 

s2 = mfxsl(x), and II 

is in fact an empty set. 

s2 = inf^s^x), and II = {x\s2 < s^(x) < Si}. We will first show, by contradiction, that II 
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Let .To € IT. Since s*(-) is piecewise continuous, there exists an interval I\ covering x0 

such that for all x G Tu s2 < s*u(x) < 3i. Now because the set {x\PP(x)/Ps(x) = a0} 

has zero length, we can always find xx G I\ such that Pp(xi)/Ps(xi) ^ a0. Without loss 

of generality, suppose that Pp(xi)/Ps(xi) > cc0. Because of the continuity of Pp{-)fPs(-), 

there exists a number e > 0 such that for all x G [xi - e,Xi + e], PP{x)/Ps{x) > a0. Also 

note that from Equation (6), s*u(x) = yp(x)Pp(x)/u(x) for all x G [xi - e,^ + e]. 

Consider now the interval T2 = Ti n [xi -e,x1 + e]. Clearly, T2 has non-zero length. For 

a given number ß G [0,1], let Tß = {x £ T2\PP{x) > ß}. Since PP(x) is continuous, there 

exists a positive number ß0 such that /r     dx = ^ fT2 dx. 

We next "perturb" the optimal traffic load g*P(x) for x G T2 as follows: 

> /„.>, _ / fl^O*) + A,   x G rßo 
9p{X)-\gP(x)-A,   xGT2\rA 

where A is a sufficiently small positive number such that: (1) A < gP(x) for all x G T2 \ I>0; 

(2) PP(x)A/u(x) < si - <(x) for all x G !>„; and (3) PP(x)A/u(x) < <(x) - s2 for all 

xGr2\r>0. 
From the choice of ß0 we know that /Fa #P(x) dx = Jr2 #P(x) dx. Therefore, the new traffic 

load pair still belongs to the family {GP, Gs}- Let s'u(-) denote the resultant throughput per 

user of the new traffic load pair {gP(-),g's(-)}- The choice of A ensures that s'u(-) satisfies 

the constraint of Problem (19), since s2 < s'u(x) < sx. 

We next compare the aggregate throughput: 

[  s'u(x)u(x)dx   =    /    s'u(x)u(x)dx+ f s'u{x)u(x)dx 

=    [  s:(x)u(x)dx+l-A(f    PP(x)dx-J PP(x)dx) 

>     f  <(x)u(x) dx + l-A(f     dx - J dx)ß0 

s*u{x)u{x)dx 
Jr7 T2 

The above inequality holds due to the fact that for all xi G I>0,x2 G T2\Tp0,wehavePp(xi) > 

ßo > PP{x2). Therefore, we find that the aggregate value of s'u is even greater than that of 

s*u. This contradicts the premise that s*u is the optimal throughput per user. Hence, II must 

be empty. In other words, s*u(x) can only take one of two values, Si or s2. 

To proceed, we next consider the optimal throughput for x G <&p. Let ßP1 = 

inf{Pp(x)|<(x) = suxe $p} and ßP2 = sup{PP(x)|<(x) = s2,x G $P}. We first assume 

that ßP2 > ßP1. Then, by definition, there exist positive numbers tut2 and Ru R2 G $p such 

that PP(R2) = ßP2 -e2> ßPX + ci = PP{RI) and <(Pi) = siXW = s2. Since <(•) is 
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piecewise continuous and Pp(-) is continuous, there exist two intervals Qi and 02 C $p, cov- 

ering Ri and R2, respectively, such that: (1) /fi dx = /n dx; and (2) for all xx £ fii, «2 G ^2, 

PP(X2) > Pp(a;i), <(«i) = si, and s*(x2) = s2- 

We next "perturb" the optimal traffic load as follows, 

gp{x)~\gP(x)-A,  iefl, 

By choosing a sufficiently small positive A, similar to the previous analysis of perturbing 

gp(x) for x G T2, it can be shown that the aggregate throughput of the new traffic load 

g'p(-) is greater than that of gp(-), which is supposed to be the optimal. By contradiction, 

we conclude that ßp2 < ßp\. Now by choosing any ßp £ [ßp2,ßpi]. Equation (20) follows 

immediately. 

Clearly, the same analysis can be applied when x € $5. I 
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1 Introduction 

We consider a wireless communication system consisting of mobile users communicating 
to base stations over a common radio channel. Since users are transmitting simulta- 
neously over a shared channel, each user is creating interference for the others. Power 
control is needed to limit unnecessary interference while providing acceptable connections 

for all users. 
We analyze a low complexity uplink power control algorithm. At each iteration, 

each user needs only a single bit of information from its assigned base station indicating 
whether its SIR is above or below its desired level. If it is above, the user decreases its 
power level by a fixed amount (in dB); otherwise, the power level is increased by a fixed 
amount. This type of algorithm has been shown to be effective in simulation studies of 
various types of systems [1, 3, 4]. Because of the fixed step sizes, the algorithm does 
not actually converge to the optimal power assignment, but we prove its stability and 
some performance guarantees in terms of analytically derived bounds on the convergence 
error. We show that the convergence error can be made as small as desirable, at the cost 
of reducing the convergence rate. We do not consider mobility, but rather assume that 
the network parameters are held constant while the algorithm runs. 

2 The Power Control Problem 
Consider a wireless system with M base stations and N users communicating over a 
common radio channel. The assignment of users to base stations is assumed to be fixed. 

The SIR of user i (at its assigned base station) is 

SIRiip) A hiiPi 

Ej^i hjiPj + at 

where p; is the transmit power level of user i, h{j is the gain from user i to the assigned 
base station of user j, cr; is the receiver noise at the assigned base station of user i, and 
p = [pi,... ,PN]

T
- User i's connection is considered acceptable under power assignment p 

if SIRi(p) > 7i, where 7; is the SIR requirement for user t. The power control problem is 
that of finding the smallest power vector for which all users have acceptable connections. 

"This research supported in part by the National Science Foundation through grant ECS-9501652 
and by the U.S. Army Research Office through grant DAAH04-95-1-0246. 



Letting H be the N x N matrix with entries Ha = 0 and Hij = jihjj/hu for j ^ i, and 
letting S be the TV-vector with entries S{ = "fi^i/hu, the power control problem can be 
written as follows: 

minimize     p 
subject to   p > Hp + S, p > 0, 

where the inequalities are componentwise and the minimization is with respect to the 
partial order associated with <. (Previous work using this formulation includes [2, 5].) 
It has been shown that a unique optimal (minimum power) solution to the power control 
problem exists if and only if p(H) < 1, where p(H) is the spectral radius of H. 

3    Algorithm Description 

We now describe the algorithm that we will analyze. At each iteration, each user increases 
its power level by a factor ß > 1 if its SIR is below the desired level; otherwise, the power 
level is decreased by a factor a, 0 < a < 1. To define the algorithm, we first define the 
function T:RN^RNa,s follows: 

Ti{p) = 
ßPi   ifS7Ä,-(p)<7i 

api   if SIRi(p) > ~fi 

We then let T{p) = [Tx(p),... ,TN(p)]T. Given an initial power vector p(0) > 0, the 

algorithm generates the sequence of power vectors <,p(n' > _   according to the iteration 

p(»+i) =   T (pW)    n > o. (!) 

This algorithm has very desirable characteristics. No global information is needed for 
users to update their power levels, and each user needs only a single bit of information 
per iteration from its assigned base station, indicating whether or not its SIR constraint 
is satisfied. It is assumed that the SIR is accurately measured and that the corresponding 
information bit is transmitted without error to the user, but simulations in [1, 4] indicate 
that this type of algorithm is robust in less ideal conditions 

4    Stability and Convergence Analysis 

An algorithm is considered to be stable if, for any initial condition p^°\ there is a finite 
power vector p such that 0 < p(n) < p for all n > 0. In this work, we prove that the 
power control algorithm defined by (1) is stable for any initial power vector p(°) > 0 
provided p{H) < 1/ß. The proof proceeds by constructing a set that contains p(0' and 
is invariant under T. 

While algorithm stability is important, it gives little information about how close 
the algorithm comes to the optimal power assignment. In this work, we prove that the 
power control algorithm provides users with acceptable connections provided a and ß 
are chosen appropriately. More specifically, we show that each user's SIR is within a 
fraction a/ß of its desired level after a finite number of iterations and never drops below 
thereafter. 

It is desirable for the power control algorithm not only to provide acceptable connec- 
tions for all users, but also to prevent excess power usage. As mentioned in Section 2, it 
is known that if p(H) < 1, then there is a componentwise mimimum power assignment 



that provides all users with acceptable connections. In this work, we establish upper and 
lower bounds on the users' power levels that are attained or approached as the algorithm 
progresses. The error is shown to be controllable by the choice of a and ß, but there is 
a tradeoff in that reducing the error results in slower convergence. 
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Abstract- In this paper, a form of decision-feedback sequence estimation (DFSE) is 
proposed for unwhitened inter-symbol interference (ISI) channels. DFSE which is a 
reduced-complexity alternative to maximum likelihood sequence estimation, performs 
very well on whitened (minimum-phase) ISI channels. However, it may not be feasible 
to compute the whitening filter for many time-varying channels like the multiuser asyn- 
chronous direct-sequence CDMA channel. On such channels, it is desirable to use the 
Ungerboeck formulation which operates directly on discrete-time unwhitened statistic 
obtained from conventional matched filtering. Unfortunately, decision-feedback sequence 
estimation for unwhitened channels is interference limited because the decision statistic 
depends on both past and future inputs. Specifically, the decision rule that chooses the 
path with the best accumulated metric leading to a reduced state, fails to account for 
interference from the future inputs not included in the reduced state. We propose a 
modified decision rule to be integrated into the Ungerboeck form of sequence estimation 
which is not sensitive to channel phase. It can be implemented as a single stage or a mul- 
tistage scheme depending on the amount of dispersion present in the channel. Simulation 
results indicate that the algorithm used on unwhitened channels with low to moderate 
dispersion, provides similar performance/complexity tradeoffs as the DFSE used on the 
corresponding whitened minimum-phase channels. The algorithm is especially attractive 
for multiuser asynchronous DS-CDMA channels with long spreading codes. 

1    Introduction 

There are two main approaches to maximum likelihood sequence estimation (MLSE) for 
known inter-symbol interference (ISI) channels with additive noise. Forney's approach 
[1] consists of using the Viterbi algorithm on the sampled output of whitened matched 
filters while Ungerboeck's formulation [2] operates directly on conventional matched filter 
output samples without the need of noise whitening. Due to the exponential complexity 
of these methods, several low-complexity sub-optimal schemes have been developed. A 
promising reduced-complexity alternative to MLSE using Forney's approach is decision 
feedback sequence estimation (DFSE) [3], [4]. The scheme provides an excellent tradeoff 
between performance and complexity. 

^his work was supported in part by the Army Research Office under grant DAAH04-95-I-0246 and 
by Ericsson Inc. 



ISI may be the result of spectral shaping at the transmitter and/or distortion in the 
physical channel. Moreover, multiuser interference can also be viewed as a form of time- 
varying ISI. A receive filter matched to a non-Nyquist transmit pulse-shaping filter or to 
the overall channel impulse response, gives rise to bi-directional ISI and correlated noise. 
The noise has to be whitened in order to use DFSE. In case of rapidly (or periodically) 
time-varying ISI channels, it may not be feasible to track the whitening filter (the com- 
putation involves polynomial factorization and inversion). An example is the multiuser 
asynchronous direct-sequence CDMA channel where the spreading of users' transmit 
pulses with long non-orthogonal spreading codes gives rise to rapidly time-varying ISI 
over the composite data sequence. Clearly, Ungerboeck's form is better suited for such 
channels as noise whitening is expensive [5]. However, a reduced-state Ungerboeck vari- 
ant (which we call UDFSE2) similar to the DFSE does not work as well. The problem 
arises from the nature of the unwhitened statistic which depends on both past and future 
input symbols. Consequently the decision rule borrowed from DFSE, which decides in 
favor of the path with the best accumulated (Euclidean distance) metric, leading to a 
reduced state, ignores interference from the future inputs not included in the reduced 
state. As a result, the decisions obtained in UDFSE are interference-limited even in the 
absence of feedback errors. The M-algorithm [7], used on unwhitened statistic, suffers 
from the same problem as paths are selected based on accumulated metrics which do not 
reflect all relevant interference components. 

In the case of UDFSE, where the reduced state is pre-determined, the interfering 
anti-causal components are known. Thus the decision rule can be modified to nullify 
the effect of these components recursively. This can be accomplished in two ways: by 
using conventional hard decisions on the relevant anti-causal interference components or 
by using decisions obtained at the output of the preceding stage in a multistage scheme. 
In either case, the preliminary decisions do not enter the branch metrics directly. The 
number of stages to use depends on the amount of dispersion present in the channel. 
Since conventional hard decisions are used to cancel interference partially, the modified 
scheme may not be suitable for highly dispersive channels. 

Simulation is undertaken to compare the performance of various algorithms on single- 
user ISI channels and multiuser asynchronous CDMA channels. It is found that the modi- 
fied UDFSE scheme obtains sizable gains over UDFSE on channels with low to moderate 
amount of dispersion. On such channels, it provides similar performance/complexity 
tradeoff as DFSE used on the corresponding whitened minimum-phase channels. The 
proposed scheme performs very well on DS-CDMA channels as the correlations among 
user's spreading codes are small. It is noted that a single-stage algorithm suffices when 
the dispersion is low while a second stage is needed in medium dispersion. On highly 
dispersive channels, the performance is not that good and may be worse than UDFSE. 

The paper is organized as follows. We present the system model in section 2. The 
two approaches to MLSE are reviewed in section 3. In section 4, we describe various 
methods of decision-feedback sequence estimation in detail and develop the modified 
UDFSE algorithm. Simulation results are presented in section 5 where the performance 
of the various schemes is compared for single user ISI channels and multiuser DS-CDMA 
channels. 

2The scheme is referred to as Delayed Decision Feedback Sequence Estimation with a standard 
matched filter in [6] 



2 System model 

Consider the transmission of linearly-modulated digital data over a (time-varying) time- 
dispersive additive white Gaussian noise channel. Assume that the receiver has perfect 
knowledge of the carrier phase, symbol timing and the impulse response of the channel 
(assumed constant for symbol period T). After coherent down-conversion, the receiver 
employs a filter hn(t) matched to the cascade of the transmit pulse-shaping filter and 
the channel impulse response and samples the output at symbol spaced intervals. The 
sequence of sampled matched filter outputs is a sufficient statistic for estimating the 
transmitted data sequence. Thus an equivalent discrete-time channel model is obtained. 

The matched filter output at time n is given by 

L 

i=-L 

where {&„} is the transmitted data sequence assumed to be i.i.d. bn G AM (an M-ary 
alphabet). sn^ are channel correlations sampled at time n, given by 

, ._ f *»(*)* M-*)Ur l»l<£ m n'~\ 0 |i| >L W 

where L < oo. {zn} is a complex Gaussian noise process with mean 0 and covariance 
E[z*2n_t-] = N0snii. We will refer to the above model as the unwhitened model. 

Let sn(D) = J2isn,iD\ then an equivalent discrete-time white Gaussian noise model 
is obtained by noting 

Sn{D) = rn(D~*)fn{D) 

where fn(D) = YA=O fn,iDl has all its roots inside the unit circle (minimum-phase chan- 
nel). Thus the statistic obtained when {yn} is filtered by the anti-causal whitening filter 
l//:^"1), is given by 

L 

y'n = Y,fn,iK-i + Zn (3) 
i=0 

{z'n} is a proper3 complex white Gaussian noise process with mean 0 and variance No. 

3 Maximum likelihood sequence estimation 

The maximum likelihood sequence estimator (MLSE) determines as the most likely se- 
quence transmitted, the sequence bN that maximizes the metric [2] 

U {yN, bN) = E 2Re{b*nyn} - £ £ b*siikbk. (4) 
n=l i=l fc=l 

where xn = #i, a;2,..., xn. Under the condition: 

sn,i = K-i-i or equivalents 5n,_t- = s*n+i>i, (5) 

it can be shown that the above metric can be computed recursively as 

U(y", bn) = XJ(yn-\ ft""1) + V(yn> bn, an^) (6) 
3E[Re{<}Im{<}] = 0 



where V(.) is known as the branch metric, given by 

V(y„A,<7n-i) = Re I b*n hyn - sni0bn - 2j2sn,ibn-ij > (7) 

and an — 6n, 6„_i,..., bn_L+1 is the state at time n. 
The above is a more generalized form of the Ungerboeck formulation (where sn>i — S{ 

i.e. the channel is fixed) independently derived in [8] in detail. The condition in (5) holds 
for time-varying channels like the asynchronous DS-CDMA channel. The application of 
this algorithm to the multiuser sequence estimation problem was noted by Verdu [9]. 

The maximum likelihood sequence can also be determined equivalently by applying 
the Viterbi algorithm on the whitened statistic {y'n} as shown by Forney [1]. The metric 

in this case can be written as 

n=l V       i=0 / 
/ y Jn,ibn- 
i=0 

which can be computed recursively as 

U' (y'n, bn) = \J'(y'n-\ 6""1) + Y(y'n, K, *n-i) 

where 
/      T. \ L 

Y(y'n, bn, an_0 = 2Re U ^ f*n>ibU 
\      i=0 / i=0 

(8) 

(9) 

(10) 

The two algorithms have the same order of computational complexity and storage 
requirement proportional to ML. 

4    Decision feedback sequence estimation 

A reduced-complexity sub-optimal alternative to MLSE using the Viterbi algorithm is 
decision feedback sequence estimation DFSE [3], [4]. A parameter called memory order 
J is chosen arbitrarily smaller than the channel memory L and the trellii is collapsed 
into MJ states corresponding to the J most recent hypothesized symbols only. Since 
the reduced state falls short in providing all the information needed to compute branch 
metrics for the next iteration, the algorithm uses the path with the best accumulated 
metric, leading to each state, to extract the rest of the information required. In other 
words, the algorithm makes tentative conditional decisions on the input symbols more 
than J samples in the past (given the J most recent hypothesized mpiii symbols) to 
cancel their effect on the current output sample. Note that this algorithm operates on 
whitened statistic {y'n} which depends on past and present inputs only. 

4.1    UDFSE 

In this section, we consider decision-feedback sequence estimation in the Ungerboeck 
form, referred to here as UDFSE (derived in [6]). 

Let ßn — bn, 6n_i,..., ftn-J+i represent the reduced state at time n and m{ßn) be the 
associated path metrics, defined as 

m(^) = maxU(j/n,6") 
hn—J 

(11) 



then the algorithm can be summarized as: 

m(ßn) = maxlm^.!) + W(yn, bn, ßn_x)\ (12) 
v-n—J 

W(ynX,ßn-i) = Relbzl2yn-snfibn-2yEsntibn-i-2  £  snX-i{ßn-i)\ \   (13) 

{Kßn)} are tentative conditional decisions on inputs more than J samples in the past, 
obtained from the path with the best accumulated metric, leading to reduced state ßn. 

bn-j(ßn) = argmax[m(/?n_i) + W(yn,6n> Ai-i)] (14) 
°n-J 

A drawback of UDFSE: Although both full-state formulations in section 3 yield the max- 
imum likelihood sequence estimate, the corresponding reduced-state derivations perform 
quite dissimilarly. In fact, UDFSE does not perform nearly as well as DFSE on most 
channels. The problem arises from the nature of unwhitened statistic. Recall that un- 
like whitened statistic, unwhitened statistic {yn} depends on both past and future input 
symbols. Now note from (14) that when deciding (conditionally) 6n_j in the rc-th step, 
the UDFSE algorithm has ignored interference from inputs bn+1, bn+2,..., bn_J+L which 
directly affect output sample yn-j corresponding to 6n_j. This means that the decision 
rule of (14), used to decide bn_j, based on the knowledge of only J inputs in the future 
is inherently near-sighted unless it has some sort of side information available about an- 
other L-J inputs in the future. Thus unlike the whitened channel counterpart, UDFSE 
suffers from a major drawback: the conditional decisions are interference-limited from 
future inputs even in the absence of feedback errors. The M-algorithm which operates 
on unwhitened statistic is also plagued by the same problem. 

4.2    Modified UDFSE 

When the reduced-state is pre-determined as in the case of UDFSE, the problem can be 
alleviated by modifying the decision rule to include a bias for cancelling the effect of the 
residual interference. Note that the full-state algorithm does not decide 6n_j until the 
(n — J+L)ih step when the interference from the relevant future inputs has been averaged 
out. On the other hand, the reduced-state scheme accounts for the contribution of only 
J inputs in the future. The bias needed to cancel the residual anti-causal interference 
completely in the reduced-state scheme can be found by comparing UDFSE term by term 
against the full-state algorithm. 

The modified algorithm (MUDFSE) can be outlined as follows: Path metrics are 
calculated as in UDFSE using equation(12). Conditional decisions are made (and the 
corresponding survivor paths are chosen) using the modified decision rule: 

bn-j(ßn) = arg max[m(j9fi_1) + W(y„, bn, /3n_i) + bias(6n_j)] (15) 

where 

bias(6n) = -2Re | b*n J2 sn,-j-ibn+J+i \ ,   k = sign(j/„). (16) 

Note that tentative hard decisions {bn} (which may not be very reliable) affect branch 
metrics (12) only through conditional decisions {&(/?„)}. Also note that the bias term 
does not add significantly to the computational load and storage requirement of the 
algorithm which is on the order of (G - J)MJ (same as DFSE), where G is the decision 
lag. The algorithm is delayed by L - J samples as yn+L-j is needed in the nth step. 



4.3    Multistage MUDFSE 

MUDFSE can be run in a multistage configuration where decisions obtained at the output 
of the first stage are fed back to compute the bias in the second stage and so on. i.e. 

(bn)i = sign(yn)  and (&„),- = (&„),-i,   i > 1 

where {(&„);} are decisions obtained from the ith stage at lag G{ (G; » L). Note that 
decisions {(6n)i} are likely to be much more reliable than {(6n)i}- The complexity and 
delay of a (J-stage scheme is given by E?=i(Gi ~ Ji)MJi and £iLi Gi + L- Jx respectively. 

Since the reliability of symbol-by-symbol decisions {sign(?/n)} depends heavily on the 
amount of dispersion present in the channel, the use of these decisions in MUDFSE 
is warranted for channels with low-to-medium dispersion only. On highly dispersive 
channels, it may be better to ignore the anti-causal interference rather than try to cancel 
it with unreliable decisions. On such channels, UDFSE may be the preferable scheme (or 
the first stage followed by MUDFSE as the second stage, in a two-stage setup). 

5    Performance results 

Performance is evaluated via simulation.  We consider binary signaling over two static 
time-dispersive additive white Gaussian noise-channels. Channel 1 is given by 
/ = (0.8614394,0.2584344, -0.1000742, -0.2740468,0.130008,0.1000742, -0.0375511, 
0.1122497,-0.1137419,-0.22837) and channel 2 is given by / = (0.7071067,-0.153016, 
0.4679421, -0.306526,0.2846515, -0.1041423,0.2437057,0.0679643, -0.0705263,0.052918). 
Both channels are minimum phase and are arbitrarily chosen. The receiver has perfect 
knowledge of the symbol timing and the impulse response of the channel. 

Figures 1 and 2 show the bit-error rate performance of various schemes on channels 1 
and 2 respectively. Each simulation was run for a count of 1000 errors. The various 
schemes are indexed with the memory order and the decision lag (J,G). Except DFSE, 
all algorithms operate on symbol-spaced samples obtained at the output of conventional 
matched filters. Ideal noise whitening is assumed for DFSE. Channel 1 has low-to- 
moderate amount of dispersion. All schemes shown in Fig 1, except MLSE, have the 
same order of overall complexity and storage requirement. Fig 1 shows that (5,45) Mod- 
ified UDFSE gains 0.5 - 1.5 dB over (5,45) UDFSE. Another 0.5 - 2.25 dB is gained by 
the two-stage scheme [(4,45), (4,45)] 2MUDFSE over single-stage (5,45) MUDFSE. No 
significant amount of further gain is achieved by the three-stage scheme with the same 
overall complexity. Its performance, however, is almost identical to that of (5,45) DFSE 
on this channel. Note that, here we have neglected the effects of non-ideal noise-whitening 
on the performance of DFSE, resulting from fixed delay constraint. The additional delay 
required can be compared to the delay of a multi-stage scheme. Moreover, the perfor- 
mance of DFSE depends heavily on channel phase with the best performance achieved on 
minimum-phase channels. On the contrary, the performance of receiver structures that 
operate on unwhitened statistic is independent of channel phase. 

Channel 2 is more dispersive than channel 1 (the main signal element /0 contains 
only 50% of the total energy). Fig 2 shows that the modified single-stage scheme 
(5,45) MUDFSE is actually a bit worse than (5,45) UDFSE for most of the SNR range. 
This is because the conventional hard decisions used in the modified scheme to compute 
the bias term, are somewhat unreliable due to heavy dispersion. However, the two-stage 
scheme [(4,45), (4,45)] 2MUDFSE, with the same overall complexity as the single-stage 



algorithms, manages to gain about half a dB owing to the much improved reliability of 
decisions available to the second stage. Its performance is still far from that achieved by 
(5,45) DFSE especially at low noise. The two-stage scheme with higher memory order, 
however, compares more favorably with (5,45) DFSE. 

Next, we simulate a BPSK modulated asynchronous DS-CDMA system with eight 
users whose signature waveforms are derived from Gold sequences of length 31. The 
relative delays of users are fixed for the simulation and are in an increasing order. The 
channel spectrum S(D) = SfD'1 + S0 + SiD is given by 

31             8-D 7 6 + D -3 +2D -6 + 5D -3 +2D -2 + D 
8 - Z)-1            31 -D 9 -2D -6-3D -7-2D -D 9-2D 

7              -D"1 31 -D -1 -D -1 -2 + D 
1 6 + D"1      9 - 2D'1 -D-1 31 -D -1 -D -1 

31 -3 +2D-1 -6-3D"1 -1 -D-1 31 -D -1 -D 
-6 + 5D-1 -7-2D'1 -D-1 -1 -D-1 31 -D -1 
-3 + 2D'1      -D-1 -1 -D-1 -1 -D-1 31 -D 
-2 + D-1    9 - 2D-1 -2 + D-1 -1 -D-1 -1 -D-1 31 

're(n),t 

The equivalent periodically time-varying ISI channel can be obtained from the relation 

5'i(/c(n),/c(n) - i + K)       «(ra) — i < 1 
50(ä(M),K(n) -i)       1 < K(n) -i<K (17) 

5i(Ac(n) — i — K, Ac(n))       /c(n) — i>K 

for \i\ < K — 1, where K is the number of users and n(n) is the user index given by 
«(n) = n mod K. 

Figure 3 shows the bit-error rate of user 1 for various schemes when all users have 
identical signal-to-noise ratio. Each simulation was run for a count of 500 errors. It is 
evident that even with ideal power control, the performance of the conventional single- 
user detector is in no comparison with optimum MLSE. With four states, (2,28) UDFSE 
and (4) M-algorithm that operate directly on the matched filter output, do not improve 
much over the conventional detector. Linear-decorrelator that nulls out all interference, 
loses about 0.7 - 1.0 dB compared to MLSE. (2,28) DFSE and (4) M-algorithm that 
operate on the equivalent whitened minimum-phase channel, closely approach MLSE 
performance. The proposed single-stage and two-stage modified UDFSE algorithms give 
by far the best performance on this channel (next to MLSE). This behavior is attributable 
to low channel cross-correlations typical of well-designed spreading codes (compare to the 
channel in figure 1). The second stage of 2MUDFSE does not provide any significant 
gain over the decisions obtained in the first stage. (2,28) MUDFSE (with four states) is 
only 0.3 dB worse than MLSE (128 states) and gains 1.0 - 3.0 dB over UDFSE. 

Figure 4 shows the bit-error rate of user 1 against the signal-to-noise ratio of the rest of 
the users. SNR of user 1 is held constant at 10.0 dB. It can be seen that the conventional 
detector, UDFSE and the unwhitened M-algorithm are limited by multiuser interfer- 
ence. Linear-decorrelator is ideally near-far resistant which means that its performance 
is the same as that of MLSE under worst case interference. In other conditions, DFSE 
and the whitened M-algorithm perform better. The proposed modified UDFSE schemes 
outperform the other methods and converge to MLSE in high multiuser interference. 

Note that MUDFSE is especially suitable for long spreading codes used in today's 
cellular systems. Channel factorization and inversion operations are difficult to perform 
on the time-varying channels that result from long spreading codes and arrival and de- 
parture of users. However, partial cross-correlations of long codes can be easily generated 
locally at the receiver (especially at the uplink). 



6    Conclusions and future work 

We described a form of decision-feedback to be integrated into the Ungerboeck formula- 
tion for sequence estimation on ISI channels. The resulting reduced-complexity algorithm 
provides similar performance/complexity tradeoffs as the decision feedback sequence es- 
timator on low to moderately dispersive channels. It, however, is insensitive to channel 
phase and does not require noise-whitening which makes it attractive for time-varying 
channels like the asynchronous DS-CDMA channel. 

The proposed scheme requires knowledge of received signal amplitudes. Thus, it 
is imperative that an adaptive form of the algorithm be developed to use on fading 
channels. In [10], UDFSE was considered for equalization in the global system for mobile 
communications (GSM) receiver. It was found that UDFSE with four states provides 
adequate performance with some degradation for rural area, typical urban and hilly 
terrain channels with six rays but exhibits inferior performance for a uniform ray power 
profile. It would be interesting to consider the proposed algorithm for these channels. 
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Figure 1: BER performance of various detection schemes on channel 1. 
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Figure 2: BER performance of various detection schemes on channel 2. 
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Abstract: In this paper, we consider soft-output mul- 
tiuser demodulation for asynchronous CDMA channels 
with coding and interleaving. First, we derive an op- 
timum soft-output multiuser estimation (0S0ME) algo- 
rithm for linearly-modulated Gaussian CDMA channels. 
The forward-recursive algorithm generates a posteriori 
probabilities (APP) for modulator-input symbols given 
the received signal, which can be fed directly to single- 
user soft-decision decoders. Second, we outline a reduced- 
state soft-output multiuser estimation (RSOME) scheme, 
with complexity exponential in a parameter called mem- 
ory order chosen arbitrarily (smaller than channel mem- 
ory). These algorithms can be employed with conventional 
matched filtering and do not require noise whitening. Fi- 
nally we present simulation results of a four-user coded 
asynchronous CDMA system. The results indicate that 
the OSOME algorithm achieves a 0.4 - 0.6 dB gain over 
soft-output Viterbi algorithm (SOVA) [3] in a power con- 
trolled environment and the reduced-state schemes provide 
a desirable performance-complexity tradeoff. 

Multiuser CDMA systems suffer from multiple-access in- 
terference (MAI), noise and other channel impairments. 
Two techniques are generally used to combat MAI. The 
first is multiuser demodulation for which there has been 
considerable research. The second technique is the com- 
bination of coding and interleaving. In order to make the 
most of error control coding, the demodulator must pro- 
vide soft-inputs to the decoders in the form of likelihoods, 
symbol APP's, erasures, etc.. Unfortunately most mul- 
tiuser detection algorithms ignore the possibility of gener- 
ating this reliability information and concentrate instead 
on minimizing the demodulated error rate. In this paper, 
we attempt to derive multiuser algorithms that estimate 
code symbol APP's and can be effectively combined with 
error control coding and interleaving. 

Recently considerable amount of work has been done in 
symbol-by-symbol detection techniques for channels with 
ISI (e.g. [1]). The optimum soft-output algorithm (OSA) 
of [1] can be applied to the multiuser case, but this requires 
noise whitening. Despite the strides made in the whitening 
technique, noise whitening requires sizable complexity and 

1This work was supported in part by the Army Research Office 
under grant DAAH04-95-I-0246 and by Ericsson Inc. 

is not very suitable for long spreading sequences and time 
varying channels. Hayes et. al. derived an optimal symbol- 
by-symbol detection (OSSD) algorithm for ISI channels 
with correlated noise (after matched filtering) [2]. They 
and other authors, however, over-estimated the complex- 
ity of this algorithm. We derive an optimum soft-output 
multiuser estimation (OSOME) algorithm based on their 
scheme. The complexity of OSOME(L) is on the order of 
M^-'P - 1){L - K + 1) + 1], where L is the decision 
lag, K is the number of users and M is the size of sym- 
bol alphabet. Thus the complexity of this algorithm is at 
par with the OSA but it does not require noise whitening. 
The OSOME algorithm is an optimum demodulator for 
a coded and linearly-modulated multiuser CDMA system 
with ideal interleaving, in the sense that without exploit- 
ing any information about coding in the demodulation pro- 
cess, it supplies each decoder with as much information as 
possible about the sequence of modulator-input symbols 
for the corresponding user while suppressing the irrelevant 
information about other user's sequences. This is called 
user-separating demodulation in [4]. 

The number of states in the OSOME algorithm is ex- 
ponential in the number of users K minus one. The state 
can be truncated arbitrarily by employing conditional de- 
cision feedback in the recursion of OSOME, resulting in 
a family of reduced-state soft-output multiuser estimators 
(RSOME(J,L)), where J is a parameter called memory 
order and L is the decision lag. The complexity of these 
algorithms is exponential in J (J < K — 1) and linear 
in L (L > K — 1). The reduced state consists of the J 
most recent symbols. The idea is to make tentative con- 
ditional decisions on the next recent K — J — 1 symbols 
conditioned on the state. These conditional decisions are 
fed back in the next iteration to compute the branch met- 
rics. This method of trellis truncation works very well 
in causal interference (that arises in a whitened Gaussian 
CDMA channel) [5]. However, due to the non-causal na- 
ture of multiuser interference resulting from conventional 
matched filtering, the conditional decisions are rendered in- 
terference limited. Thus, the performance of the reduced- 
state scheme becomes highly interference limited if these 
conditional decisions are used in computing branch met- 
rics. We overcome this difficulty by modifying the additive 
metric decomposition used for the recursion such that the 



relevant non-causal interference components are accounted 
for in the decision statistic of the symbols on which con- 
ditional decisions are made. The non-causal interference 
components are obtained by making hard decisions on the 
corresponding symbols (given only the respective matched 
filter outputs) and introducing appropriate delay in the 
recursion. Although this in turn adds noise to the com- 
posite metric, the reliability of conditional decisions (that 
play the vital role of trellis truncation) is considerably im- 
proved, resulting in an overall improvement from the mod- 
ification. 

Simulation with a four-user, convolutionally coded, 
BPSK-modulated asynchronous CDMA system on an 
AWGN channel indicates that the reduced-state schemes 
perform quite well in most interference conditions. In fact, 
the reduced-state schemes considered outperformed full- 
state SOVA in low to medium MAI. The error rate for the 
reduced-state schemes however, does not approach single- 
user performance with increasing MAI as fast as the full 
state schemes, as can be expected. The optimum soft- 
output multiuser estimator gains 0.4 — 0.6 dB over SOVA 
in power control. 
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Figure 1: BER comparison of various algorithms. 
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Abstract — A family of high-performance decision 
feedback sequence estimation receivers is described 
for various receive filtering approaches. 

I. SUMMARY 

Maximum likelihood sequence estimation (MLSE) using the 
Viterbi algorithm is well-known as an optimum detection 
technique for signals corrupted with white Gaussian noise 
and inter-symbol interference (ISI). Two classic approaches 
to MLSE are due to Forney [1] and Ungerboeck [2]. Fig.l 
shows the general structure of an MLSE receiver. A sequence 
of discrete-time sufficient statistic is extracted from the base- 
band received signal y(t) by passing it through a front-end 
filter, followed by a sampler and optionally through a discrete- 
time noise-whitening filter. The front-end filter is usually 
matched to the transmit filter. In certain cases, the sam- 
pled output of the front-end filter depends on the past as well 
as future information symbols and is affected by correlated 
noise. This occurs in the case of-fractional rate sampling, 
partial response signaling and multiuser DS-CDMA channels. 
The sampled output of a front-end filter matched to the over- 
all channel response (transmit filter + medium) also has the 
above characteristic. Approaches similar to Forney utilize a 
noise-whitening filter as a result of which the statistic zn de- 
pends on the past and present symbols only. Approaches sim- 
ilar to Ungerboeck, on the other hand, use a modified metric 
in the Viterbi algorithm so that the whitening filter is not 
needed. All of these approaches are equivalent in terms of 
performance, not considering joint channel/data estimation. 

The complexity of MLSE is exponential in channel mem- 
ory and can thus be prohibitive. Decision feedback sequence 
estimation [3] (DFSE) is a reduced complexity alternative 
to MLSE, which employs a reduced state Viterbi algorithm 
(RSVA) with state-conditional decision feedback. It is known 
that DFSE does not perform very well if the statistic is not 
whitened. On the other hand, the well-known form of DFSE 
that operates on whitened statistics performs very well (for 
minimum-phase channels). However, in time-varying condi- 
tions, it is difficult to compute the whitening filter. The fil- 
ter would have to be recomputed every symbol period for a 
multiuser DS-CDMA channel employing long spreading codes. 
Moreover, in systems that perform bidirectional equalization 
like the GSM system, whitening has to be performed in both 
directions to get a minimum-phase response. Thus, it may be 
desirable to use DFSE without noise-whitening. 

y(t) Front-end 
filter 

sampler ,   Noise-whitening,  *» Viterbi 
algorithm *l          filter              1       * 

Fig. 1: Receiver. 
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We have found that the cause for the poor performance of 
DFSE for unwhitened statistics is the existence of uncanceled 
anti-causal interference components. These components arise 
in the RSVA if the input statistic depends on future infor- 
mation symbols and affect the choice of survivor paths in the 
RSVA. Fortunately, the uncanceled interference components 
can be identified for a given model for the input statistic {zn} 
(which depends on the front-end filter and the sampler) by 
analyzing the pair-wise error event probability of the RSVA 
assuming no decision-error propagation. We propose a novel 
DFSE structure where the survivor paths are chosen based 
on the accumulated metric plus a bias term obtained from 
the analysis. The bias term uses tentative decisions to pre- 
cancel the effect of the anti-causal interference components on 
the choice of survivor paths. The tentative decisions are ob- 
tained from conventional symbol-by-symbol detection or from 
the preceding stage in a multistage scheme. The bias term 
does not add significantly to the complexity of DFSE. 

In [4], a modified unwhitened decision feedback sequence es- 
timation (MUDFSE) algorithm was derived for the case of the 
front-end filter matched to the overall channel response and 
symbol-rate sampling (i.e. the Ungerboeck formulation). The 
algorithm provides sizable gains over unwhitened DFSE for 
channels with low to moderate ISI and/or MAI. Simulation of 
an 8 user, BPSK-modulated, asynchronous DS-CDMA system 
with length 31 Gold spreading codes indicates that the mod- 
ified algorithm with 4 states approaches the performance of 
MLSE with 128 states over an AWGN channel. Moreover, the 
modified algorithm obtains a gain of 4|- dB over unwhitened 
DFSE at an error rate of 0.1% in power control. 

We have derived an MLSE receiver which does not need 
noise-whitening like the Ungerboeck receiver but has a front- 
end filter matched to the transmit filter. The new receiver uses 
a branch metric in the Viterbi algorithm that does not depend 
on future medium response coefficients (unlike the Ungerboeck 
receiver) which is desirable when the coefficients have to be 
adapted. A DFSE structure corresponding to this new MLSE 
formulation has also been developed by examining the pair- 
wise error event probability of the RSVA with the new metric. 
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Abstract- Decision feedback sequence estimation (DFSE), 
which is a reduced-complexity alternative to maximum 
likelihood sequence estimation, performs very well for 
whitened (minimum-phase) inter-symbol interference (ISI) 
channels. However, it may not be feasible to compute the 
whitening filter for many time-varying channels like the 
multiuser asynchronous direct-sequence CDMA channel. 
Moreover, the performance of DFSE is not very good for 
many non-minimum-phase whitened ISI channels and for 
channels for which it is desirable to perform bidirectional 
equalization as in the GSM system. In these scenarios, it is 
beneficial to use the Ungerboeck formulation for sequence 
estimation which operates directly on the discrete-time un- 
whitened statistic obtained from conventional matched fil- 
tering. In this paper, we show that conventional decision- 
feedback sequence estimation in the Ungerboeck form is 
interference limited. An error probability analysis leads 
us to a modified unwhitened decision feedback sequence 
estimator (MUDFSE). Simulation results indicate that 
the modified algorithm used on unwhitened ISI channels 
with low to moderate dispersion, provides similar per- 
formance/complexity tradeoffs as the DFSE used on the 
corresponding whitened minimum-phase channels. The 
algorithm is especially attractive for multiuser detection 
for asynchronous DS-CDMA channels with long spreading 
codes, where it obtains sizable gains over the (unwhitened) 
M-algorithm. 

1    Introduction 

There are two main approaches to maximum likelihood 
sequence estimation (MLSE) for inter-symbol interference 
(ISI) channels with additive noise. Forney's approach [1] 
consists of using the Viterbi algorithm on the sampled out- 
put of whitened matched filters while Ungerboeck's formu- 
lation [2] operates directly on conventional matched filter 
output samples without the need for noise whitening. Due 
to the exponential complexity of these methods, several 
low-complexity sub-optimal schemes have been developed. 
A promising reduced-complexity alternative to MLSE us- 
ing Forney's approach is decision feedback sequence esti- 

mation (DFSE) [3], [4]. The scheme provides an excellent 
tradeoff between performance and complexity. 

The performance of DFSE is sensitive to channel phase. 
While the best performance is obtained for minimum- 
phase channels, the performance may not be adequate for 
non-minimum phase channels. In the GSM system, train- 
ing sequences are inserted in the middle of the burst to 
aid channel estimation. Equalization over the data field 
is then performed bi-directionally starting out from the 
training sequence [5]. If the channel response,, is minimum- 
phase in one direction, it is maximum-phase in the other. 
DFSE performs poorly in maximum-phase conditions. 

Decision feedback sequence estimation can be employed 
for multiuser detection. In direct-sequence CDMA sys- 
tems, the spreading of users' transmit pulses with long 
non-orthogonal spreading codes, and the arrival and de- 
parture of users gives rise to a rapidly time-varying mul- 
tiuser interference channel. Conventional matched filter 
outputs are affected by non-causal interference and corre- 
lated noise. Thus, noise whitening has to be employed in 
order to use DFSE. However, noise whitening in a time- 
varying environment [6] is computationally expensive. 

Ungerboeck's formulation for sequence estimation is bet- 
ter suited in conditions such as mentioned above. A 
reduced-state Ungerboeck variant to DFSE, which we 
call unwhitened decision feedback sequence estimation 
(UDFSE), was derived in [7]2 and [5]. It operates on 
discrete-time unwhitened statistics obtained from conven- 
tional matched filtering and is thus insensitive to channel 
phase. However, the scheme does not perform as well as 
DFSE on most channels. The problem arises from the na- 
ture of unwhitened statistics which depend on both past 
and future input symbols. Thus, a decision rule similar to 
DFSE, which decides in favor of the path with the best 
accumulated (Euclidean distance) metric, leading to a re- 
duced state, fails to account for interference from the fu- 
ture inputs not included in the reduced state. As a result, 
the decisions obtained in UDFSE are interference-limited 
even in the absence of feedback errors. The M-algorithm 
[8], used on unwhitened statistics, suffers from a similar 
problem: paths selected based on accumulated metrics 
do not reflect the effect of anti-causal interference com- 

1This work weis supported in part by the Army Research Office 
under grant DAAH04-95-I-0246 and by Ericsson Inc. 

2 The scheme is referred to as Delayed Decision Feedback Sequence 
Estimation with o standard matched filter in [7] 



ponents. Thus, its performance is rather poor as noted by 
Wei et. al for CDMA systems [9]. 

In the case of UDFSE, where the reduced state is pre- 
determined, the decision rule can be modified to take into 
account the effect of the relevant anti-causal components. 
The decision rule in the modified UDFSE algorithm selects 
survivor paths based on the accumulated Ungerboeck met- 
ric plus a bias term that pre-cancels the effect of the in- 
terfering anti-causal inputs on the choice of survivor paths 
using tentative decisions. The bias term follows from an 
error probability analysis of the UDFSE algorithm. It can 
be obtained by using conventional hard decisions on the 
anti-causal inputs or by using decisions obtained at the 
output of the preceding stage in a multistage scheme. 

The paper is organized as follows. We present the sys- 
tem model in section 2. The two approaches to MLSE are 
reviewed in section 3. In section 4, we describe various 
methods of decision-feedback sequence estimation in de- 
tail. We show that UDFSE is interference limited which 
leads us to the modified UDFSE algorithm. In section 5, 
we analyze the error performance of the proposed detec- 
tor. Simulation results are presented in section 6 where the 
performance of the various schemes is compared for single 
user ISI and multiuser DS-CDMA channels. 

2    System model 

Consider the transmission of linearly-modulated digital 
data over a (time-varying) time-dispersive additive white 
Gaussian noise channel. Assume that the receiver has per- 
fect knowledge of the carrier phase, the symbol timing and 
the impulse response of the channel. After coherent down- 
conversion, the receiver employs a filter hn(t) matched to 
the cascade of the transmit pulse-shaping filter and the 
channel impulse response and samples the output at sym- 
bol spaced intervals. The sequence of sampled matched fil- 
ter outputs is a sufficient statistic for estimating the trans- 
mitted sequence in the absence of excess bandwidth. Thus, 
an equivalent discrete-time channel model is obtained. 

The matched filter output at time n is given by 

Vn —    / J   Sn,i"n-i H" %n (1) 
i=-L 

where {bn} is the transmitted data sequence assumed to 
be i.i.d. (bn G AM, an M-ary alphabet), {zn} is a com- 
plex Gaussian noise process with mean 0 and covariance 
E[z*z„_,] = NosUii, and {sn,i} is the sampled channel au- 
tocorrelation function at time n, given by 

1*1 < L 
\i\>L 

s   ■ - {  h» (-t)*hn(t)\t=iT 

0 (2) 

where L is the (finite) channel memory in symbol intervals. 
We will refer to the above model as the unwhitened model. 

Let sn(D) — Y^i sn,iD', then an equivalent discrete-time 
white Gaussian noise model is obtained by noting that 

sn(D) = K(D-l)fn(D) 

where /„(£>) = Yi=o fn,iDl has all its roots inside the unit 
circle (minimum-phase channel). The statistic obtained 
from filtering {yn} using the anti-causal whitening filter 
l//*^-1), is given by 

L 

y'n - ^2fn,ibn-i + z'n (3) 
j = 0 

where {z'n} is a proper3 complex white Gaussian noise pro- 
cess with mean 0 and variance 7V0. 

3    Maximum    likelihood    sequence 
estimation 

The maximum likelihood sequence estimator (MLSE) de- 
termines as the most likely sequence transmitted, the se- 
quence bN that maximizes the metric [2] 

U {yN, bN) = J2 2Re{*;tu - £ £ *.■ *.***    (4) 
n=\ t=l fc=l 

where xn = xi, x2,..., xn. Under the condition: 

sn,i = <_,•_,■ or equivalents «„,_,- = «*■+,■_,-,      (5) 

the above metric can be computed recursively as 

V(yn,bn) = XJ(yn-1,bn-1) + V(yn,bn,*n)        (6) 

where V(-) is known as the branch metric and is given by 

V(yn,bn,<Tn) = Re<b*n I 2yn - s„i0bn - 2j2sn>ibn-i\ i 

and cr„ — 6„_i, 6„_2,..., 6n-i is the state at time n. 
The above is a more generalized form of the Ungerboeck 

formulation (where s„;(- = Sj i.e. the channel is fixed), in- 
dependently derived in [10] in detail. Condition (5) holds 
for time-varying channels like the asynchronous DS-CDMA 
channel. The application of this algorithm to optimum 
multiuser detection for DS-CDMA was noted in [11]. 

The maximum likelihood sequence can be determined 
equivalently by applying the Viterbi algorithm on the 
whitened statistic {y^} as shown in [1], using the metric 

u'(/*,&*)=£; 
n = l 

2Re[y'nJ2 /;,<_,. 
j=0 »=0 

(8) 
which can be computed recursively as 

V'(y'n,bn) =V'(y'n-1X-i) + Y(y>n,bn,an)     (9) 

where 

V'(0„,0 = 2Re (i^XX6»-- 
»=o 

/ jJn^Un—i 
«=0 

(10) 
The two algorithms require the same order of computa- 

tional complexity and storage proportional to ML. 
3E[ReK}Im{4}] = 0 



4    Decision feedback sequence esti- 
mation 

A reduced-complexity sub-optimal alternative to MLSE 
using the Viterbi algorithm is decision feedback sequence 
estimation DFSE [3], [4]. A parameter called memory or- 
der J is chosen arbitrarily smaller than channel memory 
L and the trellis is collapsed into M3 states correspond- 
ing to the J most recent hypothesized symbols only. Since 
the reduced state falls short in providing all the informa- 
tion needed to compute branch metrics, the algorithm uses 
the path with the best accumulated metric leading to each 
state to extract the rest of the information. Note that 
this algorithm operates on whitened statistics {i/n} which 
depend on past and present inputs only. 

4.1    UDFSE 

In this section, we outline decision-feedback sequence esti- 
mation in the Ungerboeck form (UDFSE, derived in [7]). 

Let ßn  =  bn-i,bn-2,---,K-J represent the reduced 
state at time n and m(/?„) be the associated path met- 
ric, denned as 

m(/?„)=  max U(yn,bn). 
frn—J—l 

Then the algorithm can be summarized as: 

(ii) 

m(/?„+1) = max[m(/?n) + W(yn, bn, /?„)] (12) 
On-J 

where W(j/„,6„,/?„) is the branch metric, given by 

W(2/„, &„,/?„)    =    Re j &; (2y„-*„,,,&„-2^«„,,-&„_,■ 

-2    J2   8nßn-i(ßn) 
i=J+l 

(13) 

where {b(ßn)} are tentative conditional decisions on inputs 
more than J samples in the past, obtained from the path 
with the best accumulated metric, leading to state /?„, as 

6n-j(Ä.+i) = argmax[m(Ä,) + W(ifa)6niÄ,)].      (14) 
On-J 

4.1.1    A Drawback of UDFSE 

Although both full-state formulations in section 3 yield the 
maximum likelihood sequence estimate, the reduced-state 
derivation UDFSE does not perform nearly as well as its 
whitened channel counterpart (DFSE) on most channels. 
The problem arises from the nature of unwhitened statistic 
{yn} which depends on both past and future input sym- 
bols. Note that the UDFSE algorithm, when deciding &„_ j 
(conditionally) in the n-th step (14), ignores interference 
from inputs bn+i,bn+2, ■ ■ ■ ,bn-J+L which directly affect 
output sample j/„_j (corresponding to 6„_j).  Thus, the 

decision rule of (14) which is based on the knowledge of 
only J inputs in the future is inherently near-sighted. Un- 
like DFSE, the decisions obtained in UDFSE are therefore 
interference-limited even in the absence of feedback errors. 
This observation is quantified by the following analysis. 

Let {&„} be the sequence transmitted, which is elimi- 
nated in the UDFSE algorithm in favor of another sequence 
{&„}. Let {ßn} be the sequence of states in the path of {bn} 
and {ßn} be the sequence of states in the path of {bn}. An 
error event occurs between times n\ and n2 if: 

ßn — ßn  for n = ni,n2  and ßn ^ ßn  for n\ < n < n2. 
(15) 

We will show that the probability of this error event (i.e. 
the pairwise error probability) depends on the value of 
inputs 6n2,6„2+i,.. .,bn2-i+L-J in the absence of error 
propagation (from any previous error events). 
Proof: Let en =bn — bn be the error sequence. Assume: 

en = 0 for ni — L < n < ni — J — 1, (16) 

i.e. there are no errors L — J steps prior to the error event. 
The error event occurs if the accumulated metric on the 
incorrect path is greater than that on the correct path -at 
the point where the two paths merge i.e. 

ri2—1 f>2—1 

J2  W(y„,6„,^„) >   J2  W(2/n,in,/?n). (17) 
n=ni n—ni 

Substituting branch metrics from (13) and noting that 
{bn-i(ßn)} and {6„_j(/?„)} are decisions taken from paths 
corresponding to the sequence of states {/?„} and {/?„} re- 
spectively, (17) is equivalent, to 

«2—1 

Y^ Re <K I 2j/„ - s„,o6„ -2^2sniibn-i 1 \ > 
n=ni [.        \ s = l /  ) 

£ Re J i>n \2yn - snfibn - 2]£«„1,-6f,_i J K-18) 
8 = 1 

Using (1), (16) and noting that e„ = 0 for n2 — J < n < 
«2 — 1 as ßn2 = /?rji, it can be shown that the above in- 
equality holds if 

«2—1—J n2—l~J 

J]  Re{2enzn} > £  Re I <    sn0en + 2^s„,ten_s- 1 \ 
n=ni n—n-, I \ t = l / J 

n2-l-J       ( / L \} 

-    E   Re\<      2     E     Sn.-iin+AUW) 
n=n2-L       \        \    i—n2 — n I J 

The left hand side of (19) is a Gaussian random variable 
with mean 0 and variance that depends on the error se- 
quence. While the first term on the right hand side of (19) 
depends on the error sequence only, the second term in 
addition, depends on inputs i„a,6n2+i> • ■-,bn2-i+L-J- D 

The above analysis suggests that if the term which de- 
pends on the L — J future inputs is absorbed in the decision 



rule of UDFSE, the pairwise error probability of the modi- 
fied detector will depend on the error sequence only. This, 
of course, requires knowledge of some future inputs. In 
practice, tentative hard decisions can be used instead as 
described in the following section. 

4.2    Modified UDFSE 

The modified algorithm (MUDFSE) can be outlined as 
follows: path metrics are computed as in UDFSE using 
(12). Conditional decisions are made (and the correspond- 
ing survivor paths are chosen) using the modified rule: 

6„_jr(/?n+1) = argmax[m(/?n) + W(2/„,6n,/?n) - bias(/?„)] 
*n-J 

(20) 
where 

n-J 

bias(Ä,)=     £     Re^26;    £    *,-,-,&,•+,•>,    (21) 
j=n-L+l [_        i=n-j+l 

bn = sign(2/n). (22) 

The algorithm is delayed by L — J samples as yn+L-J is 
needed in the nth step. Note that (21) depends on 6„_j 
(the bit falling out of the state) and6n_j_!,.. .,6„_L+1 for 
which conditional decisions, taken from the path leading 
to state /?„, are used. The bias can be simplified to include 
only the leading term which depends on bn-j as follows: 

bias(/?„) « bias(6n_ ,) = Re J 2b*n_j  £  «„_.,,_,&„_J+< 1 
I i=j+i J 

(23) 
The approximate bias is independent of the state. It does 
not add significantly to the computational load and stor- 
age requirement of the algorithm which is on the order of 
(G - J)MJ (same as DFSE), where G is the decision lag. 

4.3    Multistage MUDFSE 

The MUDFSE algorithm can be run in a multistage con- 
figuration where decisions obtained at the output of the 
first stage are fed back to compute the bias in the second 
stage and so on, i.e. 

(6„)i = sign(j/„) and (6„),- = (&„),-_ i,   i > 1 

where {(6n)»} are decisions obtained from the ith stage at 
lag d (Gi > L). Note that decisions {{bn)i} are likely to 
be much more reliable than {(6„)i}. The complexity and 
delay of a Q-stage scheme is given by J2?=i(G* ~ Ji)MJi 

and J2i=i Gi + L — Jx respectively. 

5    Error performance 

Assuming stationarity (i.e. s„it- = «,-) and the absence of 
decision errors prior to the start of an error event, the be- 
ginning of the error event can be arbitrary aligned with 
time n = 1. In the following sections, we find the proba- 
bility that an error event occurs in modified UDFSE. 

5.1    Genie-aided MUDFSE 

Assume that perfect information is provided by a genie on 
the future inputs needed to compute the bias in (21) (i.e. 
6„ = 6„ (21)). Then, it follows from (19)-(21) that an error 
event e of length ne symbols occurs if 

J2Re{2e*nzn}>62(e) (24) 
n = l 

where 62(e) is called the distance of e and is given by 

*'(*) = uu ̂ns« — k&k- (25) 
n=l*=l 

The left-hand side of (24) is a Gaussian random variable 
with mean zero and variance 462(e)No- Thus, the proba- 
bility that the error event occurs is given by 

Pr(e) = Q 
2>/JVÖ 

(26) 

Note that this expression for the pairwise error event prob- 
ability of genie-aided MUDFSE is identical to the expres- 
sion derived in [2] for MLSE. However, there is an im- 
portant distinction in the definition of error events for 
MUDFSE and MLSE. A valid error sequence for J-order 
MUDFSE (1 < J < L) can have no more than J - 1 con- 
secutive zeros according to the definition in (15), whereas 
J = L for MLSE. When J = 0, all error sequences have 
length nc = 1 symbol. This implies that S2(s) = \e\2s0 Ve. 
In other words, a 0-order genie-aided MUDFSE approaches 
the performance of the ISI-free channel. Notice that the 
analysis does not consider decision error propagation. 

5.2    MUDFSE 

The error event probability for MUDFSE in the absence of 
ideal bias depends, in addition to the distance of the error 
event, on the residual interference arising from decision 
errors on the L — J inputs (6nc+j+i, • • •, KC+L) following 
the error event. Using (19)-(21), we get 

where 7(e) is the residual interference, given by 

7(e) = E **\< '      2_^     s-i\n+i 1 / 
i=nc+J + l — n /  ) 

- •      . .. (28) and A„ = bn — bn is the decision error. 
Note that when J = 0, MUDFSE reduces to the zero- 

forcing decision-feedback detector for unwhitened channels 
(without the feed-forward filter). Unlike DFSE, where er- 
ror event distances diminish in general when memory or- 
der J is decreased as compared to channel memory L, the 
distances for MUDFSE remain the same as in the case 
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Figure 1: BER performance of various detection schemes    Figure 2: BER performance of various detection schemes 
over an ISI channel. on an 8-user asynchronous DS-CDMA channel. 

J = L (MLSE). The variance of the residual interference 
7(e), however, increases from zero as the memory order J 
is made smaller than L in MUDFSE. This sharp contrast 
between the behavior of MUDFSE and DFSE is consistent 
with the fact that the operation of matched filtering col- 
lects all the energy of the pulse transmitted at time n into 
the corresponding output sample yn [2], while the opera- 
tion of noise whitening results in the scattering of some of 
this energy into subsequent output samples. 

6    Performance results 

Performance is evaluated via simulation. First, we 
consider binary signaling over a static time-dispersive 
additive white Gaussian noise channel, given by 
/ = (0.8614394,0.2584344,-0.1000742,-0.2740468, 
0.130008,0.1000742, -0.0375511,0.1122497, -0.1137419, 
- 0.22837). The channel is minimum phase and is arbi- 
trarily chosen. The receiver has perfect knowledge of the 
symbol timing and the impulse response of the channel. 

Figure 1 shows the bit-error rate performance of various 
schemes on the ISI channel. Each simulation was run for 
a count of 1000 errors. The various schemes are indexed 
with the memory order and the decision lag (J,G). Ex- 
cept DFSE, all algorithms operate on symbol-spaced sam- 
ples obtained at the output of conventional matched filters. 
Ideal noise whitening is assumed for DFSE. All schemes 
shown in Fig. 1, except MLSE, require similar overall com- 
plexity and storage. Fig. 1 shows that the (5,45) Modified 
UDFSE algorithm gains 1.0 - 1.7 dB over (5,45) UDFSE. 
The two-stage scheme [(4,45), (4,45)] 2MUDFSE closely 
approaches MLSE performance and obtains 0.6 — 2.2 dB 

gain over the single-stage scheme (5,45) MUDFSE. With 
bias approximation (23), the corresponding MUDFSE (re- 
duced computation) schemes, lose less than 0.5 dB. The 
error rate of (5,45) genie-aided MUDFSE is slightly better 
than MLSE as discussed in section 5.1. 

The performance of (5,45) DFSE is also close to MLSE 
for the ISI channel as shown in Fig. 1. Here we have 
neglected the effects of non-ideal noise-whitening (due to 
fixed delay constraint) on the performance of DFSE. The 
delay incurred from anti-causal filtering can be compared 
to the delay of a multi-stage MUDFSE scheme. As the 
channel used for Fig. 1 is minimum-phase, the performance 
achieved by DFSE is the best possible. The performance 
of MUDFSE, however, is independent of channel phase. 

Next, we simulate a BPSK modulated asynchronous DS- 
CDMA system with eight users whose signature waveforms 
are derived from Gold sequences of length 31. The rela- 
tive delays of users are fixed for the simulation and are in 
an increasing order. Figure 2 shows the bit-error rate of 
user 1 for various schemes when all users have identical 
signal-to-noise ratio. Each simulation was run for a count 
of 500 errors. It is evident that even with ideal power 
control, the performance of the conventional single-user 
detector is significantly worse than optimum MLSE. With 
four states, (2,28) UDFSE and (4) M-algorithm that oper- 
ate directly on the matched filter output, do not improve 
much over the conventional detector. Linear-decorrelator 
that nulls out all interference, loses about 0.7 — 1.0 dB 
compared to MLSE. (2,28) DFSE and (4) M-algorithm 
that operate on the equivalent whitened minimum-phase 
channel, obtain near MLSE performance. The proposed 
single-stage modified UDFSE algorithms by far give the 
best performance on this channel (next to MLSE). This 
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Figure 3: Near-far performance of various detection 
schemes on an 8-user asynchronous DS-CDMA channel. 

behavior is attributable to low channel cross-correlations 
typical of well-designed spreading codes (compare to the 
channel in Figure 1). (2,28) MUDFSE (with four states 
only) closely approaches the performance of MLSE (128 
states) and gains 1.2 - 3.2 dB over UDFSE. 

Figure 3 shows the bit-error rate of user 1 versus the 
signal-to-noise ratio of the rest of the users. SNR of user 1 
is held constant at 7.0 dB. It can be seen that the conven- 
tional detector, UDFSE and the unwhitened M-algorithm 
are limited by multiuser interference. The error-rate of 
linear-decorrelator is the same as that of MLSE under 
worst case interference. In other conditions, DFSE and 
the whitened M-algorithm perform better. The proposed 
modified UDFSE schemes outperform the other methods 
and converge to MLSE in high multiuser interference. 

7    Conclusions 

In this paper, we show that conventional decision feed- 
back sequence estimation with the Ungerboeck formu- 
lation as proposed in [7] (for unwhitened ISI chan- 
nels) is interference-limited. We derive a modified un- 
whitened decision feedback sequence estimation algorithm 
which alleviates this problem. On channels with low- 
to-moderate dispersion, the algorithm provides excellent 
performance/complexity tradeoffs. The algorithm is in- 
sensitive to channel phase and does not require noise- 
whitening. These attributes make it especially attractive 
for bi-directional equalization in the GSM system and mul- 
tiuser detection in asynchronous DS-CDMA systems. 
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Abstract- Decision feedback sequence estimation (DFSE), which is a reduced- 

complexity alternative to maximum likelihood sequence estimation, can be used effec- 

tively for equalization of inter-symbol interference as well as for multiuser detection. 

The algorithm performs very well for whitened (minimum-phase) channels. For non- 

minimum-phase channels, however, the algorithm is not very effective. Moreover, 

DFSE requires a noise-whitening filter, which may not be feasible to compute for 

time-varying channels like a multiuser DS-CDMA channel. Noise-whitening is also 

cumbersome for applications that involve bi-directional equalization such as the GSM 

system. In such conditions, it is desirable to use the Ungerboeck formulation for se- 

quence estimation which operates directly on the discrete-time unwhitened statistic 

obtained from conventional matched filtering. Unfortunately, decision feedback se- 

quence estimation based on matched filter statistics is severely limited by untreated 

interference components. In this paper, we identify the anti-causaJ interference com- 

ponents using an error probability analysis. This leads us to a modified unwhitened 

decision feedback sequence estimator (MUDFSE) where the components are canceled 

using tentative decisions. We obtain approximate error probability bounds for the 

proposed algorithm. Performance results indicate that the modified algorithm used 

on unwhitened channels with relatively small channel correlations, provides similar 

^his work was supported in part by the Army Research Office under grant DAAH04-95-1-0246 

and by Ericsson Inc. 



performance/complexity tradeoffs as the DFSE used on the corresponding whitened 

minimum-phase channels. The algorithm is especially attractive for multiuser detec- 

tion for asynchronous direct sequence CDMA channels with long spreading codes, 

where it can achieve near-MLSE performance with exponentially lower complexity. 

Index Terms- Equalizers, decision feedback equalizers, intersymbol interfer- 

ence, multiuser detection, multiuser channels, sequence estimation, Viterbi detection, 

CDMA. 

1    Introduction 

There are two main approaches to maximum likelihood sequence estimation (MLSE) 

for inter-symbol interference (ISI) channels with additive noise. Forney's approach [1] 

consists of using the Viterbi algorithm on the sampled output of whitened matched 

filters while Ungerboeck's formulation [2] operates directly on conventional matched 

filter output samples without the need for noise whitening. Due to the exponential 

complexity of these methods, several low-complexity sub-optimal schemes have been 

developed. A promising reduced-complexity alternative to MLSE using Forney's ap- 

proach is decision feedback sequence estimation (DFSE) [3], [4]. This scheme provides 

an excellent tradeoff between performance and complexity by reducing the memory 

order of the Viterbi algorithm and employing conditional decision feedback to cancel 

the tail of the ISI. 

A drawback of DFSE is that its performance is sensitive to channel phase. While 

the best performance is obtained for minimum-phase channels, the performance may 

not be adequate for non-minimum phase channels. In the GSM system, training 

sequences are inserted in the middle of the burst to aid channel estimation. Equal- 

ization over the data field is then performed bi-directionally starting out from the 

training sequence [5]. If the channel response is minimum-phase in one direction, it is 

maximum-phase in the other2. DFSE performs poorly in maximum-phase conditions 

and is thus unsuitable for equalization in this case. 

Besides channels with inter-symbol interference, decision feedback sequence esti- 

mation can be employed for multiuser detection. In direct-sequence CDMA systems, 

the use of long spreading codes, and the arrival and departure of users gives rise to 

a time-varying multiuser interference channel. The sequence of statistics obtained 

at the output of a bank of matched filters is affected by non-causal multiple-access 

2 Minimum-phase response can be obtained for both directions by means of appropriate all-pass 
filters. 



interference and correlated noise [6]. In order to use DFSE, the statistic has to be 

filtered to make the noise white and the interference causal. Noise whitening filters 

have been proposed for a time-varying environment [7]. However, the operation is 

computationally expensive. 

Ungerboeck's formulation for sequence estimation is better suited in conditions 

such as those mentioned above. A reduced-state Ungerboeck-type variant to DFSE, 

which we call unwhitened decision feedback sequence estimation (UDFSE), was de- 

rived in [8]3 and [5]. It operates on discrete-time unwhitened statistics obtained from 

conventional matched filtering. UDFSE is thus insensitive to channel phase and does 

not require a noise-whitening filter. However, the scheme does not perform as well 

as DFSE on most channels. This is because unlike whitened statistics, which depend 

on the past input symbols only, unwhitened statistics depend on both the past and 

future input symbols. The decision rule of DFSE selects the survivor path with the 

best accumulated (Euclidean distance) metric leading to a reduced state. The same 

decision rule when used with an Ungerboeck metric (as in UDFSE), fails to account 

for interference from the future inputs not represented in the reduced state (but would 

have been represented in the full-blown state). As a result, the decisions obtained in 

UDFSE are affected by untreated interference even in the absence of feedback errors. 

The M-algorithm [9], used on unwhitened statistics, suffers from a similar problem: 

survivor paths are chosen on the basis of an accumulated metric which does not reflect 

the effect of some anti-causal interference components. Thus, the performance of the 

unwhitened M-algorithm is rather poor as noted by Wei et. al for CDMA systems 

[10]. 

In the case of UDFSE, the decision rule can be modified to take into account 

the effect of the interfering anti-causal components. The decision rule in the modified 

UDFSE algorithm selects survivor paths based on the accumulated Ungerboeck metric 

plus a bias term that pre-cancels the effect of the interfering anti-causal inputs on the 

choice of survivor paths using tentative decisions. The bias term is determined by 

examining the pairwise error probability of the UDFSE algorithm. It can be computed 

by using conventional decisions based on matched filter outputs or by using decisions 

obtained at the output of the preceding stage in a multistage scheme. A reduced 

computation form of the modified detector was proposed in [11]. 

The rest of the paper is organized as follows. We present the system model 

in Section 2.   The two classic approaches to MLSE are reviewed in Section 3.   In 

3The scheme is referred to as Delayed Decision Feedback Sequence Estimation with a standard 

matched filter in [8]. 



Section 4, we describe various methods for decision-feedback sequence estimation in 

detail. We show that UDFSE performance is limited by untreated ISI which leads us 

to the modified UDFSE algorithm. In Section 5, we obtain approximate bounds on 

the symbol error probability of UDFSE and the modified algorithm. In Section 6, we 

illustrate how the bounds can be evaluated using error-state diagrams. Performance 

results are presented in Section 7 where the BER performance of the various schemes 

is compared for single user ISI and multiuser DS-CDMA channels using analysis and 

simulation. 

2    System model 

Consider the transmission of linearly-modulated digital data over a (time-varying) 

time-dispersive additive white Gaussian noise channel. Assume that the receiver has 

perfect knowledge of the carrier phase, the symbol timing and the impulse response 

of the channel. After coherent down-conversion, the receiver employs a filter matched 

to the cascade of the transmit pulse-shaping filter and the channel impulse response 

(assumed to be fixed for the duration of the transmit filter) and samples the output at 

symbol spaced intervals. The sequence of sampled matched filter outputs is known to 

be a sufficient statistic for estimating the transmitted sequence. Thus, an equivalent 

discrete-time channel model is obtained. The matched filter output at time n is given 

by 
L 

Vn =   ^2   Sn)i6n_i + Zn (1) 
i=-L 

where {bn}„=1 is the transmitted data sequence assumed to be independent and iden- 

tically distributed (bn £ AM, an M-ary alphabet), {zn} is a complex Gaussian noise 

process with mean 0 and covariance E[zn2*_,-] = N0snj, and sn)l- is the sampled chan- 

nel autocorrelation function, given by 

_ / Jh*(t-nT;t)h(t-nT + iT;t)dt   \i\ < L 
5n"      I 0 |i|>L (2) 

where h(r; t) is the overall channel impulse response with (finite) span L in symbol 

intervals, where r represents delay and t represents time variation. We will refer to 

the above model as the unwhitened model. 

Let sn(D) = J2iSn,iD\ then an equivalent discrete-time white Gaussian noise 

model is obtained by noting that 

*n(D) = rn{D-')fn(D) 



where fn(D) = T,f=ofn,iD{ has all its roots inside the unit circle (minimum-phase 

channel). The statistic obtained by filtering {yn} with the anti-causal noise-whitening 

filter l/f*(D~l) (assuming that it exists), is given by 

L 

y'n = Yl fn,ibn-i + 4 (3) 

where {z'n} is a proper4 complex white Gaussian noise process with mean 0 and 

variance AT0. 

3    Maximum likelihood sequence estimation 

A maximum likelihood sequence estimator (MLSE) based on the unwhitened model, 

determines as the most likely sequence transmitted, the sequence {b}%=1 that maxi- 

mizes the metric [2, 12] 

u (yN, hN) = £ 2Re{&;yn} - £ £ bUuh (4) 
n=l i=l fc=l 

where xn = xi, x2,..., xn. Due to the symmetry in the sampled channel correlations: 

sni = s*_^ _t-, the above metric can be computed recursively as 

U(^A) = U(yn_1A-i) + V(y„,6„,(rn) (5) 

where V(-) is known as the branch metric and is given by 

V(yn, bn, <r„) = Re | b*n I 2yn - snfibn - 2 £ snA-*' j | (6) 

and <rn = 6n_i, 6n_2,..., bn-L represents the state at time n. 

The above is a generalized form of the Ungerboeck formulation (where sn>i = s,- i.e. 

the channel is fixed), independently obtained in [12]. An optimum multiuser detector 

proposed by Verdu [6] for asynchronous DS-CDMA systems can be obtained from 

this formulation. 

The maximum likelihood sequence can be determined equivalently by applying 

the Viterbi algorithm to the whitened statistic {y'n} as shown in [1], using the metric 

21 

u'(&»**) =E 
n=l 

2Re^E/:A-»)- / j Jn,iOn—i 
i=0 

(7) 

4E[ReK}Im{<}] = 0. 



which can be computed recursively as 

U'G/IA) =U'(^_1,6»-1) + V'(y;A,^) (8) 

where 

V(y'nX,<7n) = 2Re(y'nJ:f:ttb*)- 
V     i=o / 

/ y Jn,iOn—i 
8 = 0 

(9) 

The two algorithms require the same order of computational complexity and stor- 

age proportional to ML. 

4    Decision feedback sequence estimation 

A reduced-complexity sub-optimal alternative to MLSE using the Viterbi algorithm 

is decision feedback sequence estimation DFSE [3], [4]. A parameter called memory 

order J is chosen arbitrarily smaller than channel memory L and the trellis is collapsed 

into MJ states corresponding to the J most recent hypothesized symbols. Since the 

reduced state falls short in providing all the information needed to compute branch 

metrics, the algorithm uses the path with the best accumulated metric leading to 

each state to extract the rest of the information. Note that this algorithm operates 

on whitened statistics {y'n} which depend on past and present inputs only (cf. (3)). 

4.1    UDFSE 

The unwhitened decision-feedback sequence estimation (UDFSE) algorithm [8] follows 

the Ungerboeck formulation for sequence estimation. The algorithm is given by the 

recursion 

m(/?B+1) = max[m(/?n) + W(yn,bn, /?„)] (10) 
°n-J 

where ßn = 6„_1? 6„_2,..., 6n_j represents the reduced state at time n, m(/?n) is the 

accumulated metric of the path associated with the state ßn and W(yn,bn,ßn) is the 

branch metric, given by 

W(yn,&n,/?n)   =   Rehl\2yn-snt0bn-2f2sn,ibn-i 

-2  E  s„A_,-(A0] [• (11) 
i=J+l 

In (11), {&„_,(/?„)} are tentative conditional decisions on inputs more than J samples 

in the past, obtained from the path with the best accumulated metric, leading to the 



state ßn, as 

bn-j(ßn+i) = arg max[m(/?n) + W(y„,6„,/?„)]. (12) 
bn-J 

Although both full-state formulations in Section 3 yield the maximum likelihood 

sequence estimate, it has been noted that the reduced-state derivation UDFSE does 

not perform nearly as well as its whitened channel counterpart (DFSE) on most chan- 

nels [10, 11]. The problem arises from the nature of unwhitened statistics {yn} which 

depend on both the past and future input symbols. Note that the UDFSE algorithm, 

when deciding bn-j (conditionally) in the n-th step (12), ignores interference from 

inputs 6n+i, bn+2,..., bn_j+L which directly affect output sample yn-j (corresponding 

to 6„_j). Thus, the decision rule of (12) which is based on the knowledge of only J 

inputs in the future is inherently near-sighted. Unlike DFSE, the decisions obtained 

in UDFSE are affected by untreated interference components even in the absence of 

feedback errors. This observation is quantified by the following analysis. 

Let {bn} be the transmitted sequence of symbols and {ßn} be the sequence of 

states in the path of {&„} in the reduced trellis. Let {bn} be a hypothetical sequence 

of symbols and {/?„} be the corresponding sequence of states in the reduced trellis 

that diverges from the correct sequence of states at time n\ and re-merges with it at 

a later time n2, i.e. 

ßn = ßn for n = ni,n2 and ßn ^ ßn for nx < n < n2. (13) 

An error event occurs at time n2 if the algorithm picks {bn} as the correct sequence 

over {bn}. 

Proposition 4.1 The occurrence of the error event depends on the value of inputs 

bn2,6„2+i,.. •, 6„2_I+L-J in the absence of error propagation (from any previous error 

events). 

Proof: The error event occurs if the accumulated metric on the incorrect path is 

greater than that on the correct path at the point where the two paths merge i.e. 

«2—1 U2— 1 

£ W(ynX,ßn) > £ W(yn,bnJn). (14) 
n—n\ n=n\ 

Assume: 

bn = bn for «i — L < n < n-i — J — 1, (15) 

i.e. there are no errors L — J steps prior to the error event. Substituting branch 

metrics from (11) and noting that {&„_,-(/?„)} and {6„_,-(/?„)} are decisions taken from 



the paths corresponding to the sequences of states {ßn} and {ßn} respectively, (14) 

can be written as 

2Re{lHy} - ~bHSb > 2Re{bHy) - b"Sb (16) 

where x — [xni, x„1+1,..., xn2-i]T and S is a banded Hermitian matrix given by 

0 

0 

S = 

•Sni.O sni,~L 0 0 

sn1 +1,1 ■Sjil+l.O Sni+1,-L 0 

Sn1+L,L sni+L,0 5ni+Z 

0 

0 

0 

■Sn2-1-L,L 

0 

0 

Sn2-1-L,0 Sn2-1-L,-L 

Sn2-2,L ' " • 3n2-2,0 ■S„2_2,_l 

0 ■S„2_1).L • • • S„2_li0 

(17) 

Let e = |(6 —6) be the error sequence. Using (1) and (15) and noting that en = 0 

for n2 — J < n < n2 — 1 as ßn2 = ßn2, it can be shown that the above inequality holds 
if 

2Re{eHz} > eHSe - e'HS'H (18) 

where^ = [zni,zni+i, • • - ,^2-i]r, &' = [6„2,6n2+1,... Ä2_1+W]r, e' = [en2_L, e„2_L+1, 

..., eri2^1_j]T and 5" is a lower triangular matrix given by 

S' = 

Sn2-L-L 0 

Sn2-L+1,-L+1     Sn2 -L+l,-L 

0 

0 

Sn2-1-J,-J-1 »n2-l-J,-L+l     Sn2-1-J,-L 

(19) 

Conditioned on the error sequence e, the left hand side of (18) is a Gaussian 

random variable with mean 0 and variance that depends on the error sequence. While 

the first term on the right hand side of (18) depends on the error sequence only, the 

second term in addition, depends on the inputs bn2,'bn2+1,..., 6„2_1+z,_j. D 

The above analysis suggests that if the term which depends on the L - J future 

inputs is absorbed in the decision rule of UDFSE, the occurrence of the error event in 



the modified detector will depend on the error sequence only. This, of course, requires 

knowledge of some future inputs. In practice, tentative decisions can be used instead 

as described in the following section. 

4.2    Modified UDFSE 

The modified algorithm (MUDFSE) can be outlined as follows: path metrics are 

computed as in UDFSE using (10). Conditional decisions are made (and the corre- 

sponding survivor paths are chosen) using the modified rule: 

6„_j(/3„+i) = argmax[m()0n) + W(y„,6„,/3n) - bias(/3n)] (20) 
bn-J 

where 
n-J ( L 

bias(A0=     £     Re ^26*    J2    *^ih+i\, (21) 
j=n—L+l ( i=n—j+l 

K = sign(yn). (22) 

The algorithm is delayed L — J samples as yn+L-J is needed in the nth step. Note that 

the bias in (21) depends on 6n_ j (the bit falling out of the state) and &„_ j_i,..., &n-L+i 

for which conditional decisions, taken from the path history of state ßn, are used. Note 

that the bias is used only for survivor path selection and does not constitute the ac- 

cumulated path metric. The bias can be simplified to include only the leading term 

which depends on 6n_j, as follows: 

bias(/?„) fa bias(6n_j) = Re I 2b*n_j  ]T  5n_j,_t-6„_j+i > . (23) 
[ tW+l J 

The approximate bias is independent of the state. It does not contribute significantly 

to the computational load and storage requirement of the algorithm which is on the 

order of (G - J)MJ (same as DFSE), where G is the decision lag. This reduced 

computation form of MUDFSE was first proposed in [11]. 

4.3    Multistage MUDFSE 

The MUDFSE algorithm can be run in a multistage configuration where decisions 

obtained at the output of the first stage are fed back to compute the bias in the 

second stage and so on, i.e. 

(6n)i = sign(j/n) and (&„),- = (6n)i-i,   i > 1 



where {(&„),•} are decisions obtained from the ith stage at lag G{ (G{ > L). Note that 

the decisions {{bn)\} are likely to be much more reliable than {(&„)i}. The complexity 

and delay of a Q-stage scheme is given by J2?=i(Gi - Ji)MJi and £)2=i G{ + L - Jx 

respectively. 

5    Error performance 

Assuming stationarity (i.e. sn<i - s,-) and the absence of decision errors prior to the 

start of an error event, the beginning of the error event can be aligned with time 

n = 1 without loss of generality. In the following sections, we find the pairwise error 

probability and an upper-bound on the symbol error probability for UDFSE and 

modified UDFSE. 

5.1    Genie-aided MUDFSE 

An error event e of length ne symbols occurs in modified UDFSE if 

ns+J _      _ _ nt+J 

E W(Vm 6», ßn) ~ hins(ßnc+J) > J2 W(yn, bn, ßn) - bias(/?ne+J).        (24) 
n-l n=l 

Assume that perfect information is provided by a genie on the future inputs needed 

to compute the bias in MUDFSE. Then, using (21) with bn replaced by bn in the 

above inequality, it follows that the error event occurs in the genie-aided MUDFSE if 

£ Re{e*nzn} > S\e) (25) 

where 8(e) is called the distance5 of the error sequence e = {ex, e2,..., e„£} and is 

given by 

S\e) = EE e>n-kek. (26) 

The left-hand side of (25) is a Gaussian random variable with mean zero and variance 

5 (e)N0. Thus, the probability that the error event e occurs is given by 

Pr(e) = Q (S)' (27) 

Note that this expression for the pairwise event error probability of genie-aided 

MUDFSE (GA-MUDFSE) is identical to the expression derived in [2] for MLSE. How- 

ever, there is an important distinction in the definition of error events for MUDFSE 

5 Notice that this definition of distance is different from the one given in [2]. 
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and MLSE. A valid error sequence for a J-th order MUDFSE (1 < J < L) can have 

no more than J - 1 consecutive zeros according to the definition in (13), whereas 

J = L for MLSE. When J - 0, all error sequences have length n£ = 1 symbol. In this 

case, S2(e) = |e|2s0. In other words, a 0-th order genie-aided MUDFSE approaches 

the performance of the ISI-free channel. Notice that the analysis does not consider 

decision error propagation. 

5.2    MUDFSE 

In the absence of ideal bias, the occurrence of the error event in MUDFSE depends, in 

addition to the distance of the error sequence, on the residual interference arising from 

tentative decision errors on the L - J inputs (bnc+J+1,..., bnc+L) following the error 

event. Note that the tentative decision errors following an error event in the main 

detector are correlated with the main decision errors due to memory in the channel. 

In order to simplify analysis, we assume that tentative and main decisions errors 

occur independently and the tentative decision error process is stationary. Thus, we 

get the pairwise error probability for MUDFSE using (24), (18 and (21) as 

where Pt is the probability that the sequence of tentative decision errors t = {tnt+j+i, 

..., tnc+L} (where tn = |(6n - bn)) follows the error event e and 7(e, t) is the residual 

interference, given by 

7(e,t)= £ Re \<   2     £     sn-fci*      /%)• W 
n=max(n£-|-Jr+l-L,l) {        \    k=nc+J+l J ) I 

The residual interference 7(e,t) can be viewed as the projection of the tentative 

decision error vector t onto the main decision error vector e as determined by the 

channel correlation spectrum s. 

Note that unlike DFSE, where error distances diminish in general when memory 

order J is decreased as compared to channel memory L, the distances for MUDFSE 

remain the same as in the case J = L (MLSE). The variance of the residual interfer- 

ence 7(e, t), however, increases from zero as the memory order J is made smaller than 

L in MUDFSE. This sharp contrast between the behavior of MUDFSE and DFSE 

is consistent with the fact that the operation of matched filtering collects all the en- 

ergy wn of the pulse transmitted at time n into the corresponding output sample yn 

11 



(sn>0 = wn) [2], while the operation of noise whitening results in the scattering of 

some of this energy into L subsequent output samples (Ef=o \U,i\2 = wn)- 

When J = 0, n£ = 1, S2(e) = \ei\2s0 and 7(e,t) is given by 

7(e,t) = Relelh^s^ktkj I/ \ex\y/s^ (30) 

i.e. MUDFSE reduces to a zero-forcing decision-feedback detector for unwhitened 

channels (where feed-forward filtering is replaced by tentative decision feedback). 

5.3 UDFSE 

Using (18), the pairwise error probability in the case of UDFSE can be written as 

Prt^EQ^y'U (3D 
b     V       v^o      / 

where Pb is the probability that the sequence of inputs b = {6ne+J+1,... ,bn£+L} 

follows the error event e (Pb = MJ~L for i.i.d. equiprobable inputs) and //(e,b) is 

the untreated interference, given by 

nc (        / n+L \  >      / 

//(e, b) = J2 R-M <    -     E     sn-kbk      / 6(e). (32) 
n=max(ne+J+l-L,l) {        \     k=nc+J+l j ) I 

Note that (31) provides an exact expression for the pairwise error probability of 

UDFSE unlike (28) for MUDFSE. 

5.4 Symbol error probability 

Assuming that all input sequences are equally likely, the symbol error probability for 

UDFSE, genie-aided MUDFSE and MUDFSE can be union-bounded as [3] 

^<£w(e)(nill^W) (33) 
Sn=l M 

where w(e) is the number of symbol errors entailed by the error sequence e and 

rinLi(^ - \en\)/M is the number of input sequences that can have e as the error 

sequence, where the symbol alphabet is given as AM = {±1, ±3,..., ±(M - 1)} for 

M even. In the case of BPSK modulation, (33) simplifies to 

^.<E^Pr(£). (34) 
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Figure 1: Error state diagram for L = 2, J = 1. 

Note that the above bounds on the probability of symbol error are obtained assum- 

ing no decision error propagation (a separation of more than L — J symbols between 

error events). However, the effect of error propagation is usually small at medium to 

high signal-to-noise ratio. 

6    Bound evaluation 

To evaluate the symbol error probability for MUDFSE, we make use of the error- 

state diagram as in [13]. The error-state diagram used for determining the: generating 

function of channel codes for maximum-likelihood sequence estimation [13, pp. 283] 

has to be modified in the case of MUDFSE so that the error sequence" satisfy (13). 

The modified diagram is shown in Fig. 1 for the case of binary signaling over an 

AWGN channel with memory L = 2 and memory order J = 1 chosen for MUDFSE. 

It has dimensionality 3L. The nodes are labeled with the error states which are 

ternary L-tuples with components that take values in {0,+1,— 1}. The transitions 

are labeled with the branch generating function Re|e* (s0en + 2 YliLi Si^n-i)} as the 

exponent of dummy variable D, and the number of symbol errors entailed by the 

13 



transition as the exponent of variable 7. A factor of 1/2 is used to account for the 

weighing factor in (34) if the transition involves an error. The transitions which lead 

back to the 0+ and 0- states (except from the 00 state) have been eliminated because 

error sequences which contain a zero in the middle are not allowed in the case «7=1, 

according to the definition in (13). 

Instead of enumerating all allowable error paths through the channel code trellis, 

we are interested in enumerating the paths that terminate with a +1 and —1 sepa- 

rately because the residual interference given by (29) depends on the tail of the error 

path e' = {emaX(n£+J+1_L|1),..., e„J. Thus, in general, we seek 2 x 3L-J~1 generat- 

ing functions (J < L) corresponding to the paths which terminate with a given tail 

(such that ent / 0). 

Let Tj(D, I) be the generating function for the error paths which terminate in the 

tail ej(j = l,...,2x 3L_J_1), found by solving the state equations simultaneously. 

Each generating function can be series expanded as follows 

tfl{DJ) 
= Y,Bi,kD5h (35) 

/=i       k 

where J9,-ifc is the number of error paths (weighted by the number of symbol errors 

on the path per the number of the corresponding input sequences) with Euclidean 

distance Sjik that terminate in the tail e.'-. Then, the symbol error probability for 

MUDFSE can be computed as 

2x3 L-J-l 

P'^   E  E E BhkD
s>*+^s^pt 

3=1 

(36) 

where we use the fact that the residual interference 7(e,t) depends on the error 

sequence e only through the tail of the error sequence e' and the distance of the error 

sequence S(e). 

Note from Fig. 1 that the error state pairs that are negative of each other are 

indistinguishable on the basis of branch values. Thus, they can be combined as in 

[13]. It follows that the number of paths that terminate in the tail e' is the same as 

the number of paths that terminate in the tail —e'. Moreover, since j(e'-,5jtk,t) = 

7(—e'j,8jtk, — t), (36) simplifies to 

^<2 E EE^^^'^t 
J=I 

(37) 
D*=Q(x/vm) 

In general, the reduced error-state diagram for binary signaling comprises (3L - l)/2 

non-zero nodes with SL~J~l terminating nodes. 
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Figure 2: BER performance of various detection schemes on channel 1. 

In order to compute (37), we assume that the sequence of tentative decision errors 

t is an i.i.d. sequence which is independent of the sequence of main decision errors e 

and has distribution 

tn 

0 l-p 

+1 \p 
-1 \v 

(38) 

where p is the probability of tentative decision error which, in the case of a single-stage 

MUDFSE algorithm, is the symbol error probability of a conventional matched-filter 

detector. 

As the noise is correlated, tentative decision errors are correlated with each other 

as well as with main decision errors. Our assumptions are thus, optimistic because 

errors in the tentative detector will tend to occur in bursts, inducing errors in the 

main detector. Nevertheless, independence can be assumed in case noise correlations 

are small. 
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7    Performance results 

In this section, we compare the performance of the various detection algorithms dis- 

cussed in this paper via simulation and analysis using several example channels. First, 

we consider binary signaling over static time-dispersive AWGN channels. The receiver 

is assumed to have perfect knowledge of the symbol timing and the impulse response 

of the channel. We run each simulation for a count of 1000 errors. 

Channel 1 is given by s' = (0.2,-0.25,1.0,-0.25,0.2), where s' represents the 

normalized channel correlations. The ISI channel has memory L = 2. Fig. 2 shows 

the BER performance of the various detection schemes on this channel. The memory 

order J is chosen to be 1 for UDFSE and modified UDFSE. The bounds in Fig. 2 are 

computed using (34) by averaging over all error sequences e with squared distance 

52(e) < 10.0. For MUDFSE, the probability of tentative decision error (p in (38)) is 

found from simulation. The bounds are tight especially for moderate to high signal- 

to-noise ratio (SNR) as can be expected of union bounds (the curves are virtually 

indistinguishable from those for simulation in the case of UDFSE and GA-MUDFSE 

at high SNR). Note that the bounds are approximate as they do not account for 

decision error propagation. However, the effect of error propagation is usually small 

in schemes that employ conditional decision feedback at medium to high SNR, as 

noted in [3]. The semi-analytic bound for MUDFSE shown in Fig. 2 seems to diverge 

somewhat from the simulation curve although it can be expected to cross over the 

simulation curve at high SNR due to dependence between the tentative and main 

decisions. 

For channel 1, modified UDFSE provides some gain over UDFSE in the low to 

medium SNR range. But at high SNR, its performance is worse than UDFSE. The 

performance differential depends on how effectively the anti-causal interference com- 

ponents affecting UDFSE (Section 4.1) are canceled in the modified algorithm by 

means of tentative decisions based on matched filter outputs. Genie-aided MUDFSE 

that cancels the anti-causal interference ideally, performs slightly better than MLSE 

as shown in Fig. 2. This is due to the reasons discussed in Section 5.1. 

Fig. 3 shows the BER performance (simulated) of various detection schemes over 

an ISI channel (2) with memory L = 9. Channel 2 is given by / = (0.861,0.258, -0.100, 

-0.274,0.130,0.100, -0.038,0.112, -0.114, -0.228). The channel is minimum-phase 

and is arbitrarily chosen. The various schemes are indexed with the memory or- 

der and the decision lag (J, G). Except DFSE, all algorithms operate on symbol- 

spaced samples obtained from conventional matched filtering. Ideal noise whitening 
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Figure 3: BER performance of various detection schemes on channel 2. 

is assumed for DFSE. All schemes shown in Fig. 3, except MLSE, require similar 

overall complexity and storage. Fig. 3 shows that (5,45) Modified UDFSE gains 

1.0 - 1.5 dB over (5,45) UDFSE in the SNR range shown. The two-stage scheme 

[(4,45), (4,45)] 2MUDFSE closely approaches MLSE performance and obtains a gain 

of 4 dB over UDFSE at an error rate of 10-4. The single-stage and two-stage MUDFSE 

(reduced computation) schemes lose less than 0.5 dB due to bias approximation (23). 

The performance of (5,45) DFSE is also close to MLSE for channel 2 as shown 

in Fig. 3. We have neglected the effects of non-ideal noise-whitening (due to fixed 

delay constraint) on the performance of DFSE. The delay incurred from anti-causal 

(noise-whitening) filtering needed in DFSE can be compared to the delay of a multi- 

stage MUDFSE scheme. As channel 2 is minimum-phase, the performance achieved 

by DFSE is the best possible for any channel phase. The performance: of UDFSE and 

MUDFSE, however, is independent of channel phase. 

Fig. 4 shows the BER performance (simulated) over another ISI channel (3) with 

memory L = 9. Channel 3 is given by / = (0.707,-0.153,0.468,-0.306,0.285, 

-0.104,0.244,0.068,-0.070,0.053). Channel 3 is more dispersive than channel 2. 

Note that the (5,45) MUDFSE schemes do a little worse than (5,45) UDFSE. This 

is partly because conventional hard decisions are unreliable (BER ~ |).   The two- 
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Figure 4: BER performance of various detection schemes on channel 3. 

stage MUDFSE schemes, therefore, obtain better performance. Due to the heavy 

correlation between tentative and main decisions, however, the two-stage schemes are 

unable to provide as much improvement over UDFSE as obtained for channel 2. 

Next, we simulate a BPSK modulated asynchronous DS-CDMA system with eight 

users whose signature waveforms are derived from Gold sequences of length 31. The 

relative delays of users are fixed for the simulation and are in an increasing order. The 

multiuser channel is static and has the same spectrum as given in [ll]6. Fig. 5 shows 

the BER of user 1 for various detection schemes when all users have identical SNR. 

Each simulation was run for a count of 500 errors. It is evident that even with ideal 

power control, the performance of the conventional single-user detector is significantly 

worse than optimum MLSE. (2,28) UDFSE provides some improvement over the con- 

ventional detector. The four-state (unwhitened) M-algorithm that operates directly 

on the matched filter output is about 2 dB worse than the M-algorithm that operates 

on the equivalent whitened minimum-phase channel. The linear-decorrelator, that 

nulls out all interference, loses about 0.5 - 1.0 dB compared to MLSE due to noise 

enhancement. (2,28) DFSE also obtains near MLSE performance. However, DFSE, 

6The simulation results reported in [11] are off by 3 dB (worse) due to a mistake in normalization 
of symbol energies. 
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Figure 5: BER performance of various detection schemes over an 8-user asynchronous 

DS-CDMA channel. 

the linear-decorrelator and the (whitened) M-algorithm require multiuser channel in- 

version and/or factorization which has complexity quadratic in the number of users. 

Moreover, the M-algorithm requires sorting of survivor paths at each iteration which 

is not needed for DFSE or UDFSE as they are trellis based. 

The single-stage modified UDFSE algorithms which require a bank of matched fil- 

ters only, obtain the best performance on this channel (next to MLSE). (2,28) MUDFSE 

(with four states only) closely approaches the performance of MLSE which requires 

128 states in the Viterbi algorithm. With bias approximation, (2,28) MUDFSE (RC) 

obtains a gain of 4.5 dB over UDFSE at an error-rate of 0.1%. 

Fig. 6 shows the BER of user 1 versus the SNR of the rest of the users. The SNR 

of user 1 is held constant at 7.0 dB. It can be seen that the conventional detector, 

UDFSE and the unwhitened M-algorithm do not perform well in a near-far situation. 

The linear-decorrelator, DFSE and the whitened M-algorithm perform well. However, 

the modified UDFSE schemes outperform the other methods and converge to MLSE 

in high SNR of interfering users on this channel. 

The improvement afforded by the modified UDFSE algorithm over UDFSE de- 

pends on several factors. Among these factors is the amount of ISI, the reliability of 
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Figure 6: Near-far performance of various detection schemes over an 8-user asyn- 

chronous DS-CDMA channel. 

tentative decisions and the choice of the memory order. On channels with small sam- 

pled correlations, the conventional matched filter detector makes relatively reliable 

decisions. The reliability of tentative decisions can be improved further by means of 

an auxiliary stage. If the memory order is not too small, the error performance of the 

modified detector (28) is dominated by error event distances in the main stage rather 

than the residual interference. Close to MLSE performance is achieved in this case. 

Unlike DFSE, error event distances in MUDFSE do not diminish with the memory 

order as discussed in Section 5.1. Thus, MUDFSE generally outperforms DFSE (with 

similar complexity) on channels with small correlations since the residual interference 

is reliably removed. An example is the multiuser DS-CDMA channel where well- 

designed spreading codes or long spreading codes, in a not so highly loaded system, 

provide low channel cross-correlations. 

The modified UDFSE algorithm may perform worse than UDFSE (as well as 

DFSE) for channels with large sampled correlations (highly dispersive ISI channels 

or heavily loaded multiuser channels). This is not mainly due to the unreliability of 

tentative decisions. An auxiliary stage can render relatively reliable tentative deci- 

sions. However, due to the strong dependence between error events in the auxiliary 
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and the main stage, the main stage can not significantly improve upon the decisions 

obtained in the auxiliary stage. 

8    Conclusions 

In this paper, we show that decision feedback sequence estimation based on con- 

ventional matched filter outputs (a reduced-state version of the Ungerboeck MLSE 

formulation) is affected by untreated interference components. We derive a modified 

unwhitened decision feedback sequence estimation algorithm which uses tentative de- 

cisions to cancel the anti-causal interference components. The algorithm, which oper- 

ates on matched filter outputs, provides excellent performance/complexity tradeoffs 

on channels with relatively small sampled correlations. The algorithm is insensitive 

to channel phase and does not require noise-whitening. These attributes make it at- 

tractive for bi-directional equalization in the GSM system and multiuser detection in 

asynchronous DS-CDMA systems. 

The algorithm can be improved by using soft tentative decisions instead of hard 

decisions. An adaptive form of the algorithm should be considered for time-varying 

media. The algorithm can be modified to provide soft outputs for coded systems. 

An approximate error probability analysis is conducted in this paper which provides 

some insight into the proposed algorithm. An in-depth analysis is needed, however, 

to better identify the class of channels for which gains are afforded by the modified 

algorithm and to quantify the gains for a given channel with given complexity. 
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Abstract- In this paper, we derive a new maximum-likelihood sequence estima- 

tion (MLSE) receiver that operates on fractionally-spaced samples obtained at the 

output of an analog filter matched to the transmit pulse-shaping filter. A fractional 

MLSE receiver was proposed by Hamied et al. that requires a fixed noise-whitening 

filter to whiten noise samples at the output of the transmit matched filter. Due to the 

presence of nulls in the Nyquist bandwidth of practical pulse-shaping filters like the 

square-root raised cosine filter, the noise-whitening filter has a long slowly-damped 

delay response and any practical length truncation results in significant distortion. 

The new receiver does not need noise-whitening. The branch metric of the Viterbi al- 

gorithm in the receiver accounts for the correlation in the noise samples. The receiver 

is insensitive to sampler timing phase. An adaptive form of the receiver requires only 

one step prediction of medium response coefficients. These features make the receiver 

attractive for fast time-varying channels. 

Index Terms- Adaptive equalizers, equalizers, fading channels, intersymbol in- 

terference, maximum likelihood estimation, sequence estimation, time-varying chan- 

nels, Viterbi detection. 
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1    Introduction 

Maximum-likelihood sequence estimation (MLSE) is an optimum detection technique 

for signals corrupted with intersymbol interference (ISI) and additive white Gaussian 

noise (AWGN). Forney [2] and Ungerboeck [9] derived MLSE receivers for known 

time-invariant channels. The latter formulation was extended for the case of known 

time-varying channels by Bottomley et al. [1]. Adaptive channel estimation using 

(tentative) decision feedback is assumed in the case of unknown time-varying channels. 

In wireless communication systems, the channel is generally considered as com- 

prising a time-invariant transmit (pulse-shaping) filter followed by a time-varying 

transmission medium. Forney and Ungerboeck's receivers employ an analog front-end 

filter which is matched to the overall channel response. If the transmission medium 

is time-varying or unknown at the receiver, the front-end filter has to be adaptive. 

This is not desirable for implementation purposes. Ungerboeck also described an 

adaptive receiver in [9] which uses a discrete-time transversal filter at the front end 

to synthesize matched filter characteristics. The receiver, however, does not take ad- 

vantage of the fact that the transmit filter is generally known at the receiver and this 

information can be exploited to improve channel estimation in the presence of excess 

signal bandwidth. 

Many wireless radio systems have transmitted signals with bandwidth more than 

the data rate. Narrowband TDMA systems based on the IS-54/IS-136 and PDC 

standards employ 35% and 50% excess bandwidth respectively. In the presence of 

excess signal bandwidth, fractional sampling is effective due to its insensitivity to 

sampler timing phase [7]. Some authors [5, 6] have considered using an analog front- 

end filter which is matched to the transmit filter response (transmit matched filter) 

followed by a fractional sampler. They, however, assume that the noise affecting 

the sampled statistic is white. The branch metric of the Viterbi algorithm ignores 

the correlation in the noise samples. As a result the performance improvement is 

marginal. 

Hamied et al. [3] derived an MLSE receiver for systems that employ at most 100% 

excess bandwidth. Their receiver employs a transmit matched filter followed by a 

fractional sampler and a fixed noise-whitening filter. The statistic thus obtained is 

white. However, we note that practical pulse-shaping filters like the square-root raised 

cosine filter have nulls in the Nyquist spectrum, due to which the noise-whitening filter 

has a long slowly-damped delay response. Any practical length truncation of the filter 

leads to severe distortion. 



Following the development in [1], we derive an Ungerboeck-type receiver which 

does not need noise-whitening. The branch metric of the Viterbi algorithm accounts 

for the correlation in the noise samples affecting the fractionally sampled statistic ob- 

tained at the output of a transmit matched filter. An adaptive algorithm exploits the 

knowledge of the pulse-shaping filter and adapts just the fractionally-spaced medium 

response coefficients. However, the branch metric for the receiver depends on future 

medium response coefficients up to the span of the medium response. The prediction 

of these future coefficients using an adaptive algorithm would result in excess estima- 

tion error and thus degrade performance. We derive an alternative formulation for 

the branch metric which depends on causal medium response coefficients only. Thus, 

only one step prediction is needed to adapt the medium response coefficients. The 

receiver is suitable for systems with excess signal bandwidth and rapidly time-varying 

channels. 

The paper is organized as follows. In Section 2, we describe the system model and 

in Section 3, we define an MLSE receiver. In Section 4, we re-visit the Ungerboeck- 

Bottomley formulation for time-varying channels. We describe the channel model for 

a system with excess signal bandwidth in Section 5. A fractional Ungerboeck-type 

receiver is then derived in Section 6. Section 7 deals with the receiver of Hamied 

et al. [3]. A new fractional MLSE receiver that does not need noise-whitening and 

minimizes channel prediction is described in Section 8. 

2    System model 

Consider the transmission of linearly-modulated digital data over a linear, time- 

dispersive medium. The system model consists of a transmitter, a linear time-varying 

transmission medium and a receiver. The baseband transmitted signal is modeled as 

N-l 

E 
n=0 

*(*) = E anq(t - nT) (1) 

where q(t) is the impulse response of the transmit filter and {an}%£ is a finite 

sequence of complex symbols (taken from a finite alphabet A). The radio signal 

transmitted propagates through the medium to reach the receiver where it is converted 

to a complex-valued, baseband signal y(t), given by 

y{t)   =   g{r;t) * x(t) + w{t) 

=   Jg(t-X-t)x(X)d\ + w{t) (2) 



where g(r; t) is the output of the transmission medium at time t when an impulse is 

applied at time t — T and w(t) is a complex white Gaussian noise process with power 

spectral density NQ. Substituting (1) in (2), we get 

y{t)= f^anh(t-nT;t) + w(t) (3) 
71=0 

where h(r; t) models the overall response of the transmit filter and the transmission 

medium and is given by 

h(r;t) = Jg(r - \;t)x(\)d\. (4) 

The received signal y(t) is collected over a finite time interval, denoted / which is much 

larger than [0, (N - 1)T]. The response h(r;t) is assumed to be square integrable 

over the interval /, i.e. 

/oo 
\h(r-t)\2dT <oo for tel. (5) 

-oo 

3    Maximum likelihood sequence estimation 

A maximum likelihood sequence estimation (MLSE) receiver finds the hypothetical 

sequence of symbols {an} {an € .4) that maximizes the likelihood of the received 

signal y(t) given that {an} was transmitted. Assuming equiprobable symbols, an 

MLSE receiver maximizes the log-likelihood function derived from the a posteriori 

distribution of the received signal. Ignoring constant scaling factors and additive 

terms, the log-likelihood function reduces to 

2 

JH = -I   \y(t)-yH(t)\2dt = - f 
Jtei Jtt 

N-l 

y(t)-J2anh(t-nT;t) 
n=0 

dt,        (6) 

where H is the hypothesis corresponding to the sequence {an}. It is assumed that 

y(t) is band-limited in the receiver front end, using a bandwidth larger than the signal 

bandwidth, so that the integral in (6) is well defined. 

4    The Ungerboeck-Bottomley formulation 

In this section, we re-derive an MLSE receiver following the development of Bottomley 

et al. [1]. The receiver is an extension of Ungerboeck's MLSE formulation [9] to time- 

varying channels. Expressions developed here will be used in later sections, where we 

derive fractional MLSE receivers. 



The log-likelihood function JJJ can be expanded as 

JH = A + BH + CH, 

where 

A=-f    \y(t)fdt, 
Jtei 

BH=  f    2Re \f^a*nh*(t-nT;t)y(t)\dt, 
Jt^ U=0 J 

N-l N-l 

CH = -        E E <<*kh*(t - nT; t)h(t - kT; t)dt. 

(7) 

(8) 

(9) 

(10) 
n-0 k=0 

Since term A is independent of the sequence hypothesis, an MLSE receiver chooses 

the sequence hypothesis that maximizes the metric 

A# = BH + CH- (11) 

Terms BH and CH can be written as 

5n=f;12Re{<z(n)}, 
n=0 

N-1N-1 

CH = - E E ana*s(n - *; n)> 
ra=0  fc=0 

(12) 

(13) 

where {z(n)}n=Q is the sequence of symbol-spaced samples obtained at the output of 

a receive filter matched to the channel impulse response h(r; t), as 

z(n) = h*(-r; t - r) * y(t)\t=nT = f   h*(t - nT; t)y(t)dt (14) 

and the s parameter is the sampled channel autocorrelation function, given by 

s(l;n)= f h*(t;t + nT)h(t + lT;t + nT)dt (15) 

where n G {0,1,..., N-1} and / <E {0, ±1,..., ±(N-1)}. Noting that s*(k-n; k) = 

s(n — k; n) and using the following identity for multi-dimensional summation 

/    / / 
EXXn>*0 = ]r 
n=ik=i n=i 

n-l 

x(n,n) + E (x(n,k) + x(k,n)) 
k=i 

(16) 

term C# can be expanded as 

N-l 

CH = -E 
n=0 

n-l 

a*a„s(0; re) - ^ 2Re{a*afcs(n - A;; re)} 
fc=o 

(17) 



Substituting (12) and (17) in (11) and letting L be the smallest integer such that 

s(l;n) = 0 for |/| > L, we get the metric as 

N-l 

n-0 

(18) 

where an represents the subsequence hypothesis an : an_i,an_2,..., ftn-i and Tn(an, an) 

is the branch metric, given by 

r„(a„,(7n) = Re< a* 2z(n) - s(0; n)an - 2 £ s(l; n)an-\ 
i=i 

(19) 

The receiver can be implemented as shown in Fig. 1. The front-end filter in the 

receiver is matched to the overall channel response h(r;i). The Viterbi algorithm in 

Fig. 1 finds the sequence {an} that maximizes the metric of (18). The number of 

states in the Viterbi algorithm is \A\L, where |.4| is the size of the input alphabet 

and L is the overall channel memory in symbols (assumed finite). 

y(t). k*(-T\t-T) _\- 
z{n) 

t = nT 
Viterbi 

algorithm 

Figure 1: Ungerboeck-Bottomley receiver 

5    Channel model 

If the baseband transmitted signal x(t) has bandwidth W < M/2T, where M is an 

integer, then an arbitrary medium response g(r; t) can be modeled as a fractionally- 

spaced tapped delay line [10, pp. 488] 

9(r; t) = £ c(jT/M; t)5(r - jT/M) (20) 

where 
T-3 iT/M\ 

c(jT/M;t) = c(j;t) = Jg(r-t)smc ^   ^" J dr. (21) 

Assuming that the medium response can be well-approximated by Lc +1 fractionally- 

spaced taps (i.e. c(j;t) = 0 for j > Lc), the overall channel impulse response can be 

written as 

h(r; t) = g(r; t) * q(r) = £ c(j; t)q(r - jT/M). (22) 
3=0 



Typically, | < WT < 1 for full-response signaling and WT < \ for partial- 

response signaling (continuous phase modulation) used in narrowband mobile com- 

munication systems. Symbol-spaced channel models have been used to develop MLSE 

receivers [8, 4]. Symbol-spaced MLSE receivers yield close to optimum performance 

if the excess signal bandwidth (WT in excess of \) is small. However, the perfor- 

mance of these receivers is highly sensitive to the timing phase [3] in the presence of 

excess bandwidth. This is due to the inability of a symbol-spaced transversal filter 

to invert a null in the sampled signal spectrum without excessive noise enhancement 

[7]. Fractionally-spaced MLSE receivers, on the other hand, are insensitive to the 

timing phase as aliasing does not occur in the sampled signal spectrum in the case of 

a fractionally-spaced transversal filter. 

6    A fractional Ungerboeck-type receiver 

Adaptation of channel parameters is usually needed for an MLSE receiver on time- 

varying channels. Ungerboeck's adaptive receiver [9] consists of a fractionally-spaced 

transversal filter followed by a symbol-rate sampler and a Viterbi algorithm. The 

coefficients of the front-end filter and the sampled channel autocorrelation function 

V are adapted using a stochastic steepest descent algorithm. The s parameters 

are needed to compute the branch metric (19) in the Viterbi algorithm. Note that 

the s parameters depend on the transmit filter response and the medium response. 

Since the transmit filter response is known at the receiver, channel estimation can be 

improved by adapting the medium response coefficients directly instead of adapting 

the s parameters. The formulation of Section 4 can be modified for this purpose as 

shown in [1] for the case of symbol-spaced channel models. 

Substituting (22) in (14) and (15), and assuming that the the medium response co- 

efficients c(j; t) are fixed (time-invariant) over the span of the transmit filter response2 

q(t), we get 
z(n^p/^n + ßY(n + ß, (23) 

aßn) » E X>* (j;n + j^c(k]n-l+yj rq(lM + j - k), (24) 

where the discrete-time medium response coefficients are defined as c(j; i) = c(jT; iT) 

for values of i in multiples of T/M, and {Y(-)} is the sequence of fractionally-spaced 

2The assumption makes sense when the time variation in the channel coefficients c(j; t) is slow 

relative to the span of the transmit filter. 



samples obtained at the output of a receive filter matched to the transmit filter 

response q(t), as 

Yhß=L*{t-{n+jt)T)',m        (25) 

and rq(i) is the fractionally-sampled autocorrelation function of the transmit filter, 

given by 
r^)=L^t)q(t+x^)dt (26) 

,,(+\ *(n + ii\ y(-} >  n*i    t) > q {   t) «•(*" + £) 
r(») Viterbi 

algorithm 

Figure 2: A fractional Ungerboeck-type receiver. 

The receiver is shown in Fig. 2. It has a front-end filter matched to the transmit 

filter response q(t), followed by a fractional-rate sampler. The fractionally-sampled 

statistic is filtered by an adaptive discrete-time filter and fed to a Viterbi algorithm. 

The Viterbi algorithm uses the branch metric of (19) with the s parameters given by 

(24). Note that the receiver in Fig. 2 has a fixed analog front-end filter unlike the 

receiver of Fig. 1, where the front-end filter is adaptive. 

Note from (23) and (24), that the branch metric at time nT given by (19), depends 

on medium response coefficients for times up to (n+Lc/M)T. Thus, medium response 

coefficients have to be predicted (for Lc + 1 future steps) in the adaptive receiver of 

Fig. 2. The accuracy of prediction decreases in general with the number of steps over 

which prediction is required. This makes the adaptive receiver of Fig. 2 unsuitable 

for channels with rapid time variation. 

7    A fractional Forney-type receiver 

An alternative receiver is obtained by noting that the statistic given by (25) can also 

be expressed as 

y (» + i) = t o (•; n + ±)   E  r,(,K^ + „ (n + ±) (27) 
.=0      N "x '   l=-L, 



where {u(-)} is a complex Gaussian noise sequence with autocorrelation 

E Kn+
M) 

V
* (m+it)]= N°rq^n ~m)M+j ~ ^       (28) 

Oj-   if   k = iM,   i is an integer 
C'k/M (29) 

0 otherwise 

and Lq is the smallest integer such that rq(i) = 0 for |z| > Z,g. Thus, it is assumed that 

the transmit filter has a finite impulse response. In practice, transmit pulse-shaping 

filters like the square-root raised cosine (SRRC) filter are truncated to a span of 

several symbols. Let the D-transform of the transmit filter autocorrelation function 

rq(n) (the sampled autocorrelation spectrum) be defined as 

Lq 

Rq(D)=   £   rq(n)Dn (30) 
n=—Lq 

where D stands for fractional symbol duration. 

Hamied et al. [3] obtain an adaptive MLSE receiver by assuming that the statistic 

{V(-)} obtained at the output of the front-end filter in Fig. 2 can be whitened by using 

a fixed noise-whitening filter. The noise-whitening filter is determined by factoring 

the sampled autocorrelation spectrum Rq(D) as 

Rq(D) = F*q{D-')Fq{D). (31) 

In case the transmit filter spectrum has no roots on the unit circle, the factor Fq(D) = 

J2n=ofq(n)Dn is chosen such that all its roots are outside the unit circle. The anti- 

causal noise-whitening filter is then given by (F*(£>_1))_1 which is stable in the sense 

that its coefficients are square summable. 

For many practical pulse-shaping filters like the SRRC filter, the sampled auto- 

correlation spectrum has zeros on the unit circle. This is illustrated in Fig. 3 which 

shows the amplitude of the sampled autocorrelation spectrum for SRRC pulses (trun- 

cated to a span of 500 symbols) with various roll-off factors. The spectrum exhibits 

nulls in the Nyquist bandwidth 1/T (corresponding to M = 2). This is true for all 

SRRC pulses with roll off factor ß € [0,1]. The noise-whitening filter does not exist 

for these pulses as the nulls in the Nyquist band can not be inverted. Fig. 4 shows 

the sampled autocorrelation spectra for the same SRRC pulses but with a truncation 

of 10 symbols. Note that the nulls are less severe in this case. Strictly speaking, 

the noise-whitening filter exists for all practical finite-length transmit pulse-shaping 

filters. However, due to the presence of zeros near the unit circle, the noise-whitening 
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Figure 3: Sampled autocorrelation spectra for SRRC pulses truncated to 500 symbols 

(a) ß = 0,(b)ß = 0.35, (c) ß = l. 

filter has a long slowly-damped impulse response and any practical length truncation 

results in severe distortion. Fig. 5 shows the effect of truncation of the noise-whitening 

filter. The squared error resulting from truncation is given by 

\Fq(D) - Fg(D)\\'< (32) 

where Fq(D) is the whitened channel spectrum obtained from using a truncated noise- 

whitening filter WiD-1) as Fg(D) = W(D_1)Ä,(I>)- Fig. 5 shows the squared error 

for the SRRC pulse of Fig. 4 (truncated to 10 symbols) with ß = 0.35 and M = 

2. Note that the squared error exhibits damped oscillations and is significant even 

with 500 taps of the noise-whitening filter (spanning 250 symbols). The error would 

increase with the length of the SRRC pulse because the nulls would be deeper as 

demonstrated in Fig. 3. 

8    A new fractional MLSE receiver 

In this section, we derive an alternative fractional MLSE receiver that does not require 

noise-whitening unlike the receiver of Hamied et ah [3]. Moreover, it does not require 

10 
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Figure 4: Sampled autocorrelation spectra for SRRC pulses truncated to 10 symbols 

(a) ß = 0,(b)ß = 0.35, (c) ß = 1. 

extra prediction of medium response coefficients unlike the Ungerboeck-type receiver 
of Fig. 2. 

Substituting (23) in (12) and making a change of variables gives 

N-l Af-1 ( Lc , v , ,\ B'-SSffl'{S«w^i!»+i)^(-+S)} 
Substituting (24) in (13) and making a change of variables gives 

(33) 

a 
(AT-l)M Lc (N-l)M L, 

H £ § £ t,a"^a^c"^)cK'M)r'{n-k)- (34) 

Using (16), term CH can be written as 

JV-lM-l L 

CH=   - 
n=0 m=0j=0 
EEEReHJ;n + 3«;^ 

+    25>9(0X>(/;n + 
j=i i=o    v 

A/7      "TT 

m — i' 

rg(0)gc(/;n + ^)a„+!^ 

Thus, the metric A# in (11) can be written as 

N-l 

n=0 

(35) 

(36) 

11 
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Figure 5: Squared error due to truncation of the noise-whitening filter for SRRC pulse 

truncated to 10 symbols with ß = 0.35. 

where T'n(an,an) is the branch metric, given by 

M-\  L, m\     * 
'      MJ   n+st L «-'»+£) 

VI— 1    Lie ( / 

-^)E4^ + 3«n+^-2E^)Ec(';« + 
/=0      V ' t'=l 1=0      V 

m — i 

M 
<X, i m-«-I (37) 

Again using (16) for the term involving r,(0) in (37), the branch metric can alterna- 

tively be written as 

M-l L, 

; n + —- ) a , m-j 
My  "+V 

27(1 + 
m 

M 
££Re{c*(j; 
71=0 J=0 ^ v 

Lc-3      / m\ \ L<i Lc^      , 

+ 2Ec(i + /;n + ^)v^ -2Er*(0Ec(/;« + 

TO 
r,(0)(c(j> + — )a^ 

m — i 

M   1   "-+-S2- 
(38) 

The receiver is shown in Fig. 6.   It employs a fixed front-end filter matched to 

the transmit filter response.   The output of the front-end filter is sampled at the 

12 



fractional-rate and fed to a Viterbi algorithm. The number of states in the Viterbi 

algorithm is \A\L, where L = Lc'^Jq is the overall channel memory in symbols. 

The Viterbi algorithm processes M samples of the input statistic every symbol time 

T. The branch metric given by (37) or (38) has M terms corresponding to each 

sample. Note that an M step prediction of medium response coefficients is needed to 

compute the branch metric at each recursion. An alternative approach is to process 

one sample of the input statistic every T/M seconds by computing one component 

(of the M components) of the branch metric at each recursion followed by an update 

of the medium response coefficients. An advantage of this method is that the medium 

response coefficients can be estimated more accurately as only one step prediction is 

performed at the fractional rate. 

y{t) 
<fH) J {»+*£) 

* = (" + £)r 
Viterbi 

algorithm 

Figure 6: A new fractional MLSE receiver 

For a symbol-spaced channel model (M = 1), the branch metric given by (38) 

simplifies to 

J2 Re {c* (i;n)a 

3=0 
n-3 

Lc-j 

2Y (n) - r,(0) [ c (j; n) an_j + 2 £ c (j + I; n) «„__,-_, 

Lq Lc 

2 J2 ri(i) X)c (*;n - 0 «n-i-j 
t'=l /=0 

(39) 

which reduces to the "Partial Ungerboeck" formulation of Bottomley [1] for the case 

of Nyquist pulse-shaping (i.e. rq{n) = 8(n)). 

9    Conclusions 

In this paper, we derived a new fractional MLSE receiver for time-varying channels. 

The receiver consists of a fixed analog front-end filter matched to the transmit pulse- 

shaping filter, a fractional sampler and a Viterbi algorithm. The branch metric of the 

Viterbi algorithm accounts for the correlation in the noise samples which is known 

13 



at the receiver. The branch metric depends on causal fractionally-spaced medium 

response coefficients which can be adapted using only one step prediction. The rceiver 

is suitable for communication systems with excess signal bandwidth and rapidly time- 

varying channels. 
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Abstract- In this paper, we examine the role of the receive filter and the branch 

metric in decision feedback sequence estimation (DFSE) and M-algorithm receivers. 

We consider a generalized receiver which consists of a front-end filter (matched to 

the overall channel response or the transmit filter response) followed by a general 

transversal processing filter and a reduced trellis or tree search algorithm. A first 

event error analysis of the generalized receiver indicates that a proper combination 

of the processing filter and the branch metric is necessary to avoid bias (untreated 

interference components) in the receiver. Bias occurs in a DFSE or M-algorithm 

receiver due to a mismatch between the processing filter and the branch metric. We 

show that the processing filter must either be the appropriate noise-whitening filter or 

the zero-forcing filter in order to achieve unbiasedness. We obtain the branch metric 

for the reduced trellis and tree search algorithms for each case of matched filtering. 

The well-known DFSE and M-algorithm receivers where the search algorithm operates 

on whitened statistics belong to the class of unbiased receivers, while the receivers 

where the search algorithm operates on standard matched filter statistics belong to 

the class of biased receivers. We characterize the error performance of various DFSE 

and truncated memory MLSE receivers in terms of a parameter called the error 

distance which includes the effect of noise enhancement. We show that the whitening 

filter DFSE receiver is optimum among unbiased DFSE and truncated memory MLSE 

receivers (with pre-filtering) in the sense that it maximizes the error distance.  We 

1This work was supported in part by the Army Research Office under grant DAAH04-95-I-0246 

and by Ericsson Inc. 



obtain upper bounds on the symbol error probability of the various DFSE receivers 

and outline a generating function approach to evaluate the bounds. Simulation and 

analytical results are presented for the case of a symbol-sampled channel model and 

a fractionally-sampled channel model. 

Index Terms- Equalizers, decision feedback equalizers, intersymbol interference, 

M-algorithm, sequence estimation, Viterbi detection, multiuser detection. 

1    Introduction 

Maximum-likelihood sequence estimation (MLSE) [11, 22, 4, 23] is an optimum de- 

tection technique for channels with memory and additive noise. As the complexity 

of the various MLSE algorithms is exponential in the channel memory, several low- 

complexity suboptimal methods have been proposed. One method is to ignore the 

tail of the delay response or to select a subset of states in the Viterbi algorithm for 

reduced state detection [24, 12]. The residual interference that arises as a result limits 

the performance of these methods even at modest ISI levels [18]. Another approach 

is to pre-cancel the tail of the delay response using a linear or a decision feedback 

equalizer (DFE). The DFE approach [16, 27] suffers from severe error propagation 

on channels where the tail contains a significant fraction of the total energy in the 

channel while the linear pre-filtering approach [10, 19] enhances noise. 

Decision feedback sequence estimation (DFSE) [6, 5, 8, 9, 28, 21, 13, 14, 15] and 

the M-algorithm [1, 26, 29] are two well-known reduced-complexity alternatives to 

MLSE. These algorithms find applications in equalization of inter-symbol interference 

(ISI) [6, 5, 8, 28, 21, 13, 14, 15], detection of partial response signals, trellis-coded 

modulation [6, 8, 9] and multiuser detection [26, 29, 13, 14, 15]. DFSE is a trellis- 

based method where the complexity is controlled by reducing the memory of the 

trellis in the Viterbi algorithm. On the other hand, the M-algorithm is a tree-based 

method where the complexity is reduced by pruning the tree (representing sequence 

hypotheses) to maintain a given number of branches at each step. Both schemes feed 

back conditional decisions taken from survivor paths to cancel the tail of the delay 

response. This manner of decision feedback has been shown to alleviate the problem 

of error propagation that arises in the conventional DFE approach. 

DFSE and M-algorithm receivers were originally proposed to operate on discrete- 

time statistics containing white noise for which case they have been thoroughly investi- 

gated [6, 8, 21, 1, 26]. However, receivers that operate on matched filter statistics have 

also been proposed for various applications [5, 28, 13, 26, 29]. The main advantage of 



these receivers is that they do not require noise-whitening. Computing the whitening 

filter can be cumbersome for some applications like bidirectional equalization in the 

GSM system and multiuser detection of direct-sequence CDMA (DS-CDMA) signals 

[28, 13, 14]. An investigation of the DFSE and M-algorithm receivers with matched 

filter statistics is given in [15] and [26] respectively. It has been noted that the receive 

filter has a significant influence on the bit-error performance of these receivers. 

In this paper, we extend the techniques of DFSE and M-algorithm to operate 

on the output of a general transversal processing filter which follows a front-end 

matched filter. We provide two different formulations of the branch metric — one 

for the case of standard matched filtering (front-end filter matched to the overall 

channel response) and the other for the case of transmit matched filtering (front-end 

filter matched to the transmit filter response). The latter formulation is in terms of 

causal medium response coefficients. It is desirable if adaptive channel estimation is 

needed for fractionally spaced medium response coefficients in case of excess signal 

bandwidth. We conduct a first event error analysis of the various receivers which 

indicates that the error performance of some of the receivers is affected by "untreated 

or raw" interference components (bias). Bias occurs in a DFSE or M-algorithm 

receiver due to a mismatch between the processing filter and the branch metric. This 

leads to the classification of the various receivers as biased and unbiased, where the 

notion of "unbiasedness" is devised to mean that an error event is independent of the 

transmitted sequence given the error sequence. 

We find that there exist only two processing filters for each case of matched filtering 

described above that result in unbiased receivers, namely the filter that whitens (or 

partially decorrelates) the effect of the matched filter and the filter that zero-forces (or 

completely decorrelates) the effect of the matched filter. The whitening filter DFSE 

(WF-DFSE) and whitening filter M-algorithm (WF-MA) receivers with a standard 

matched filter are the well-known receivers described in [6, 8, 21, 1, 26]. The zero- 

forcing DFSE (ZF-DFSE) receiver with a standard matched filter was derived in [20]. 

The class of biased receivers includes matched filter DFSE (MF-DFSE) and matched 

filter M-algorithm (MF-MA) receivers where the matched filter statistic is fed directly 

into the reduced trellis or tree search algorithm without further processing. The MF- 

DFSE(S)2 receiver was proposed in [5, 28]. The MF-MA(S) receiver was proposed in 

[29] for multiuser detection. 

We find the probability Pr(e) of the occurrence of a given first error event e for the 

various DFSE receivers. The probability Pr(e) in the case of unbiased DFSE receivers 

2Where 'S' stands for standard matched filtering. 



is completely characterized by the error distance 8(e) of the receiver. We use a broader 

definition of the error distance (than given in [11]) that includes the effect of noise 

enhancement. In the case of BPSK modulation, the probability Pr(e) for an unbiased 

DFSE receiver is equal to the error probability of a memoryless system with signal 

amplitude equal to |^(e). We show that the error distance is maximized by the MF- 

DFSE(S) receiver. However, the error performance of the MF-DFSE(S) receiver is 

dominated by untreated interference components (bias) for most channels of interest 

and is therefore not very good. Among unbiased DFSE receivers, the error distance is 

maximized by the WF-DFSE receivers for each case of matched filtering. We also show 

that the error distance of truncated memory MLSE receivers that employ pre-filtering 

to reduce memory [10, 19], is lower than the error distance of WF-DFSE. Thus, WF- 

DFSE receivers have the best error performance among these unbiased trellis-based 

receivers, not considering the effects of error propagation. However, bias-compensated 

MF-DFSE receivers, where the bias is canceled using tentative decisions (proposed 

in [14, 15]), can outperform the WF-DFSE receivers of commensurate complexity"for 

channels where reliable tentative decisions can be obtained. 

We obtain upper bounds on the symbol error probability of the various DFSE 

receivers. We show that these bounds can be evaluated using a generating func- 

tion method similar to MLSE, clearing the misconception that a generating function 

method is not applicable to the case of DFSE due to the use of decision feedback [21]. 

The paper is organized as follows. The system model is given in Section 2. MLSE 

receivers that consist of a front-end matched filter followed by a general transver- 

sal processing filter are described in Section 3. The corresponding DFSE and M- 

algorithm receivers are described in Sections 4 and 5 respectively. In Section 6, we 

conduct a first event error analysis of the various receivers. Sections 7 and 8 deal 

with unbiased and biased receivers respectively. Section 9 deals with a truncated 

memory MLSE receiver that employs pre-filtering. In Section 10, we derive bounds 

on the symbol error probability and in Section 11, we compare the error distances of 

the various receivers. In Section 12, we show how the bounds can be evaluated using 

error state diagrams. In Section 13, we compare the error-rate performance of the 

various receivers for a symbol-sampled system and a fractionally sampled system via 

simulation and analysis using some example channels. 



2    System model 

Consider the transmission of linearly-modulated digital data over a linear, time- 

dispersive medium. The system model consists of a transmitter, a linear time- 

invariant transmission medium and a receiver. The baseband transmitted signal is 

modeled as 
JV-l 

st(t) = £ and(t - nT) (1) 
n=0 

where {ön}^1 is a finite sequence of complex symbols (taken from a finite alphabet 

.4.) and d(t) is the impulse response of the transmit filter. The signal transmitted 

propagates through the medium to reach the receiver where it is converted to a 

complex-valued, baseband signal y(t), given by 

y{t)   =   g(t) * st(t) + w{t) 

' g(t - \)st(\)d\ + w(t) (2) I- 
where w(t) is a complex white Gaussian noise process with power spectral density NQ 

and g(t) is the impulse response of the transmission medium (assumed stationary). 

The medium response is modeled as a tapped delay line with Lc complex-valued 

symbol-spaced tap coefficients c(i), i.e. 

g(t) = jrc(i)6(t-iT). (3) 
t=0 

Substituting (1) in (2), we get the received signal as 

N-l 

y(t) = E anh{i ~ nT) + w{t) (4) 
n=0 

where h(t) models the overall response of the transmit filter and the transmission 

medium and is given by 

h(t) = Y,c{i)d{t-iT). (5) 
i=0 

The response h{t) is assumed to be square integrable. 

3    Maximum Likelihood Sequence Estimation 

Maximum likelihood sequence estimation (MLSE) is an optimal detection algorithm 

that minimizes the probability of sequence error for a 'priori equiprobable sequences. 

In this section, we describe an MLSE receiver with a general transversal processing 



filter. The processing filter has no influence on MLSE performance as we will see in 

the next section. However, the expressions developed in this section will be useful 

when we consider the effect of the processing filter on reduced trellis and tree search 

algorithms. 

It is well-known [11, 22, 4] that the sequence of symbol-spaced samples {Z(TI)}^~Q 

obtained at the output of a receive filter matched to the overall channel impulse 

response h(t) forms a set of sufficient statistics for detecting the transmitted sequence 

{an}n=o given the received signal y(t). The matched-filter statistic z(n) is given by 

z{n) = h*(-t) * y(t)\t=nT = I h*(t - nT)y(t)dt. (6) 

In vector notation, the sequence of matched-filter statistics is given by 

z = Sa + u (7) 

where a = [a0, au..., aJV_1]T, z = [z(0), z(l),..., z(N-l)]T, u = [u(0), u(l),..., u(N- 

1)]  , and S is an N x N Hermitian Toeplitz3 matrix known as the channel spectrum. 

The (i,j)-th element of S is given by 

s(i,j) = s{i-j) = Jh*(t)h(t + (i-j)T)dt. (8) 

The elements s(i) are samples of the autocorrelation function of the overall channel 

response which is assumed to have finite span. The smallest integer L such that 

s(i) = 0 for \i\ > L is known as the channel memory. We assume that the channel 

memory L is much smaller than the length iV of the transmitted sequence. The matrix 

S is thus banded. The vector u is a discrete Gaussian noise vector with elements 

(n) = f    h*(t - nT)w(t)dt (9) u 
ha 

and autocorrelation Efu^u] = A^^. 

Consider a transversal processing filter P which processes the output of the 

matched filter. The output of the processing filter which is an N x N matrix, is 

given by 

x = Pz = P(Sa + u) (10) 

From (7), it follows that x = [x(0), x(l),..., x(N — 1)]T is a Gaussian random vector 

with mean PSa and autocovariance N0PSPH, given the information sequence a. 

Assume that the inverse processing filter P"1 exists. Then, it is possible to recover 

the original sequence z from the filtered sequence x.  Thus, the sequence x forms a 



y(t) h*{-t) _v '(*) 
t = nT 

Processing 
filter P 

x(n) Viterbi 
algorithm 

Figure 1: A generalized MLSE receiver 

set of sufficient statistics for detecting the transmitted sequence a given the received 

signal y(t). 

Consider the receiver shown in Fig. 1. The receiver finds the hypothetical se- 

quence of symbols {an} (an G A) that maximizes the likelihood of the received signal 

y(t) given that {otn} was transmitted. Assuming equiprobable symbols, the receiver 

maximizes the log-likelihood function derived from the a posteriori distribution of 

the received signal. Ignoring constant scaling factors and additive terms, the log- 

likelihood function reduces to 

JH = ~{x - PSa)H{PSPHY\x - PSa) (11) 

where the superscript H stands for Hermitian transpose and the subscript H corre- 

sponds to the hypothesized sequence a. Neglecting terms common to all hypotheses, 

the metric to be maximized by the Viterbi algorithm can be written as 

AH = 2Re{aHP-1x} - aHSa (12) 

Assume that the matrix S is positive definite. Then, it can be decomposed into its 

unique Cholesky factors as 

S = FHF (13) 

where F is an N x N invertible lower-triangular matrix. For N ^> L, the matrix F 

is near Toeplitz4. Also note that 

S = F?F+ 

where F+ is an N + L x N matrix with elements 

(14) 

f{iJ) = 
f(i-j)   0<i-j<L 

0 otherwise 
(15) 

3i.e. the elements of S satisfy s(i, j) — s(i — j). 
4The matrix has constant elements along each diagonal except the elements in some bottom rows. 



obtained from the inverse z-transform of the minimum-phase Cholesky factor F(z) of 

the z-transform of {s(i)}. Then, the metric in (12) can be written as 

AH = 2Re{aHp-1x} - \\F+a\\2. (16) 

The metric can be approximated as 

AH « 2Re{aHp-1x} - ||Fa||2 (17) 

where F is an N x N lower-triangular Toeplitz matrix with elements given by (15). 

The approximation in (17) is a result of premature trellis termination in the Viterbi 

algorithm at the tail of the transmitted sequence. We adopt the approximate expres- 

sion for the total metric (17) rather than (16) for simplicity of notation and analysis. 

In order to be consistent then, we let S — FHF throughout the rest of the paper, 

without loss of generality. 

The two expressions for the total metric (12) and (17) lead to two different additive 

decompositions (branch metrics). In order to obtain a general expression for the 

branch metric, we write the channel spectrum as 

S = RQ (18) 

where R is an N x N upper-triangular Toeplitz matrix with elements 

r{i,j) = < _ (19) 
0 otherwise 

where lT is either 0 or L and Q is an N x N Toeplitz matrix with elements 

,.   .,      \ q{i-j)   -L + lr<i-j<L 
q(hj)=\ . (20) 

I        0 otherwise 

In (12), R = I and Q = S while in (17), R = QH = FH. 

Assume that the inverse processing filter consists of lp + If + 1 coefficients (lp -f 1 

causal and // anti-causal). The elements of the N x N banded Toeplitz matrix P"1 

are given by 

p'ü - i)   -'/<*- i < lp 
P'ihj) = ' (21) 

0 otherwise 

This structure for the inverse processing filter encompasses many filters of interest, 

including the zero-forcing filter and the noise-whitening filter. 
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Using (19), (20) and (21), the total metric in (12) can then be written as 

AH = 2Re{aH[(P-1)Lx]} + 2Re{[aH(P-1)™]^ - [aHR][{Q)La] - [aHR(Q)UD}a 

(22) 

where the superscripts L, U and D denote the lower-triangular, the upper-triangular 

and the diagonal part of a matrix respectively. The above form for the total metric 

leads to the additive decomposition 

JV-l 

AH = E T(an,(Tn) 
n=0 

where T(an,an) is the branch metric corresponding to the state an : an-i, 

(Lv = max(L,//)) in the trellis of the Viterbi algorithm, given by 

(23) 

T(an,an)   =   2Re{a*nY,p'(l)x(ri-l) + x(n)Y;p'(-lX-i 
{      1=1 i=o 

X>(-o<c] (E?(0«-I) -«»X>(-0 E ?(-*)<-!-* (24) 
^i=o /   \i=i ' '=0 k=o 

where an = 0 for N — 1 < n < 0.  The Viterbi algorithm recursively computes the 

accumulated metric defined as 

M(an)= max        E^'^) (25) 
«li<*2 «n-tv-1 »=0 

for all subsequence hypotheses (or states) an. The recursion follows from (24) and 

(25) as 

M{an+1) = max [M{crn) + T{an, an)). (26) 

The number of states in the Viterbi algorithm is \A\Lv (note that the memory of the 

Viterbi algorithm Lv may be greater than the channel memory L). The output of the 

Viterbi algorithm is the estimated sequence {an}. 

»w, d*(- -0 s z'(n) 

/ = = nT 
Processing 

filter P 
x'(n) Viterbi 

algorithm 

Figure 2: An alternative MLSE receiver 

An alternative MLSE receiver is shown in Fig. 2.   It differs from the receiver 

of Fig. 1 in that it has a front-end filter which is matched to just the transmit 



filter response d(t) instead of the overall channel response h(t).  The transmit filter 

matched-filter statistic z'{n) is given by 

z'(n)   =    (T{-t)*y(t)\t=nT = j d*(t-nT)y{t)dt 

=     Yi  Sc(t)^(n,n-/K-i-i + «'(n). (27) 
l=-Ld i=0 

which can be written in vector notation as 

I = $Ca + u' (28) 

where z' = [z'{0), *'(1),..., z\N - 1)]T, u' = [«'(0), «'(1),..., u'(N- 1)]T   The matrix 

C is a lower-triangular Toeplitz matrix with elements 

c(»,i) = 
c(i -j)   0<i-j<Lc K        J      ~ (29) 

0 otherwise 

and the matrix $ is a Hermitian Toeplitz matrix with elements which are samples of 

the transmit filter autocorrelation function 

<KiJ) = <K* ~ J) = J d*{t)d{t + (i - j)T)dt. (30) 

Let <f>(i) = 0 for \i\ > Ld. The overall channel memory is then L = Lc+Ld. The vector 

u' is a Gaussian random vector with mean zero and autocorrelation E[u/Hu'] = N0$. 

Note that the statistic z can be obtained from the statistic z' as z = CHz[. The 

sequence z', thus, forms a set of sufficient statistics for detecting the transmitted 

sequence given y(t). The statistic x' input to the Viterbi algorithm is given by 

x' = Pz' = P($Ca + «'). (31) 

The log-likelihood function in this case is given by 

J'H = _(x' - P$Ca)H{P$PH)-\x! - P$Ca) (32) 

which yields the likelihood metric to be maximized by the Viterbi algorithm in Fig. 2, 
as 

A^ = 2Re{aHCHp-1x1} - aHCH$Ca. (33) 

Again two different additive decompositions of the above metric are possible cor- 

responding to the two decompositions of the matrix $, i.e. 

* = R'Q' (34) 
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where the elements of R! are given by 

I 0 otherwise 

where lTi is either 0 or Ld and the elements of Q' are given by 

q'(i - j)    -Ld + lri <i-j < Ld 
q'{hj) = ' (36) 

0 otherwise 

In one case R' = I,Q' = $ and in the other case R' = Q'H = F,H. The matrix F' is a 

lower-triangular Toeplitz matrix with elements f'(i) given by the inverse z-transform 

of the minimum-phase Cholesky factor F'(z) of the z-transform of {<f>(i)}- Then, (33) 

can be written as 

AH = £ r'K> *n) = 2Re{aHCHP-1x!} - aHCHR'Q'Ca. (37) 
n=0 

where the branch metric T'(an, an) is given by 

I>n,0   =   2Re| (Y,<?{1)CSJ\ \^p\l)An-M+x\n)^c\l)YjP'{-k)aU-k 
[ \l=0 )   \l=l ) 1=0 fc=o 

- (i>(0£r'(-A;)aO (£) c(/) £ ^)an_,_fc 
\i=o        fe=o /  y=o       fc=i y 

E c*(0 E r'(-fc) LE ' «'(-'»X-i-*-») fi: C
('K-<) • (38) 

ki=o Jt=o m=o /   \z=o / 

The memory of the Viterbi algorithm in this case is L'v = ma.x(L,Lc + If).   Note 

that the receiver of Fig. 2 can be easily extended for the case of a fractionally-spaced 

medium response model.  In this case, the output of the transmit matched filter in 

Fig. 2 is sampled at a multiple of the symbol rate (say u/T).  The memory of the 

Viterbi algorithm is \L'vjv\ and the branch metric is modified by replacing an in (38) 

by 7rn, given by 

an/„   n/u integer 
7r„ = < (39) 

0       otherwise 

4    Decision Feedback Sequence Estimation 

Decision feedback sequence estimation (DFSE) is a reduced complexity alternative 

to maximum likelihood sequence estimation which provides an adjustable perfor- 

mance/complexity tradeoff.   Proposed by Duel-Hallen et al.   [5, 6]5 and Eyuboglu 
BThe algorithm is referred to as Delayed Decision Feedback Sequence Estimation in [5, 6] 
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et dl. [8], the scheme employs a reduced trellis search algorithm to search through 

a subset of sequence hypotheses searched by the full-blown Viterbi algorithm. The 

complexity is controlled by a parameter called memory order J, which is chosen arbi- 

trarily smaller than the memory of the Viterbi algorithm. The trellis in the reduced 

trellis search algorithm then comprises \A\J states corresponding to the J most re- 

cent symbol hypotheses. Survivor paths or sequences are chosen in the reduced trellis 

search algorithm on the basis of the same cost function as in MLSE (i.e. the accu- 

mulated likelihood metric). A transition in the reduced trellis specifies the J + 1 

most recent hypothesized symbols. The remaining L — J symbols needed to compute 

the branch metric are obtained from decisions taken from the survivor history (past 

decisions) of the path. 

y(0j,., ^1   v *(«) 
/»•(-*) -> 

t = nT 
Processing 

filter P 

x(n) Reduced trellis 
search algorithm 

Figure 3: A generalized DFSE receiver 

The DFSE algorithms proposed by Duel-Hallen et al. operate on matched-filter 

and whitened statistics obtained from conventional matched filtering and whitened 

matched filtering respectively. Here we generalize the DFSE algorithm to operate 

with a general transversal processing filter. The receiver is shown in Fig. 3. The 

reduced trellis search algorithm has memory order J chosen such that 0 < J < Lv. 

It employs the recursion: 

M(ßn+1) = max[M{ßn) + T{an,ßn)} (40) 
an—J 

where ßn : an_1,an_2,... ,an-J represents states in the reduced trellis at time n, 

M(ßn) is the accumulated metric of the survivor path associated with state ßn and 

r(an,ßn) is the corresponding branch metric given by 

r    h h 
r(c*n,/?n)    =   2Re\a*nJ2p'(l)x(n-l) + x(n)J2p'(-l)r]*n_l 

{        1=1 1=0 

EK-OC) (l>('>?n-<) -«n£r(-o X>(-*K_,_*(4i) 
J=0 I    \l=X / 1=0 k=0 
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Vn- (42) 

where at time n 
«n_i 0 < i < J 

Ctn-i{ßn)     J + l<i<Lv 

In (42), {ai(ßn)} are tentative conditional decisions on symbols more than J samples 

in the past obtained from the history of the survivor path associated with state ßn, 

as 

&n-j{ßn) = arg max [M{ßn) + T{an,ßn)}. (43) 
an—J 

The reduced trellis branch metric T(an,ßn) of (41) corresponds to the full trellis 

branch metric r(an, an) given by (24). Note that the (whitened matched filter) DFSE 

algorithm of [6] is obtained by substituting P~l = R = QH = FH and the DFSE 

algorithm with the standard matched filter, proposed in [5], is obtained by substitut- 

ing P~x = R= I, Q = S. In the first case, the whitened channel F with coefficients 

{/(n)} is minimum-phase. 

vW d*(-t) _^U 
t = nT 

Processing 
filter P 

x'(n) Reduced trellis 
search algorithm 

Figure 4: An alternative DFSE receiver 

An alternative DFSE receiver shown in Fig. 4 corresponds to the MLSE receiver 

of Fig. 2, in that the front-end filter is matched to the transmit filter response. It 

follows the recursion: 

M'(ßn+1) max [M'(ßn) + T'(an,ßn)} (44) 

where the memory order is chosen in the range 0 < J < L'v and the reduced trellis 

branch metric T'(an,ßn) is obtained by replacing an-i in (38) by 

r)'n-i 
Oin-i 0<i<J 

&'n-i(ßn)     J + l<i<L'v 

where {c^(ßn)} are tentative conditional decisions obtained as 

«n-j(#0 = argmax[.M'03n) + T'(an,ßn)]. 

(45) 

<*n-J 
(46) 
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The branch metric is given by 

i, 

C 
1=0 k=0 

T'(an,an)   =   2Re|^C*(0eiJ[Ep,(/K(n-0)+^)E^(0E^,(-%: 

E c*(l) E r'i-kW:^) (JT c{l) E q'ik^u 
j=o fc=0 /   \/=o Jfc=l 

E <=*(0 E -'(-*) LE' «'He«-,.) fE W.J 

-j-fc 

iZ=0 fe=o m=0 U=0 

With P = R' — Q' = I, we get the case of Nyquist pulse-shaping6 at the transmit- 

ter and transmit-filter matched-filtering at the receiver with no further processing. 

This results in the DFSE receiver of [6] where the statistic is white and the chan- 

nel C with coefficients {c(n)} may have any phase (minimum, mixed, or maximum 

phase). With P'1 = R' = Q'H = F'H, the whitened channel F'C with coefficients 

{/'(n) * c(n)} has mixed phase in general. 

5    M-Algorithm 

The M-algorithm (MA) [1] is well-known as another reduced complexity alternative 

to MLSE. The scheme was originally proposed to operate on white (or whitened) 

statistics. However, it has also been used with the standard matched filter (see for 

example [29, 26]). The M-algorithm is essentially a reduced tree search algorithm. At 

each step, M survivor paths (hypothesized sequences) are extended to MA paths, of 

which the M paths with the best accumulated likelihood metric are retained and the 

rest are discarded. 

(47) 

y(t) feVOI-N z{n\ 
t = nT 

Processing 
filter P 

x(n) Reduced tree 
search algorithm 

Figure 5: A generalized M-algorithm receiver 

In this section, we extend the M-algorithm to operate with a general transversal 

processing filter. The receiver is shown in Fig. 5.  Let an(j) = (a0,o;i,.. ,,an_i) be 

6Using transmit pulses that satisfy the Nyquist criterion for ISI free transmission. 

14 



one of the M survivor paths (j = 1,..., M) at time n. At time n + 1, the reduced 

tree search algorithm extends each survivor into A paths an+1 = (an(j),an) and 

computes their accumulated likelihood metric using 

M(an+x) = M(an(j)) + TK,an(j)) (48) 

where the branch metric F(an,crn(j)) which depends on the last Lv hypothetical 

symbols an(j) in the survivor path ^(j), is given by (24). The M paths with the 

highest accumulated metric are then selected. 

An alternative M-algorithm receiver has a front-end filter matched to the transmit 

filter response and uses the branch metric of the MLSE receiver of Fig. 2, given by 

(38). 

6    First Event Error Analysis 

In this section, we examine the first event 'error (FEE) probability of the general- 

ized DFSE receiver of Section 4 (Fig. 3) and the generalized M-algorithm receiver of 

Section 5 (Fig. 5). We say that a first event error is made in the reduced trellis or 

tree search algorithm (at time j) if the correct path is abandoned for the first time 

in favor of a competitor path or paths that diverge from the correct path at time j. 

Note that our definition of a first event error is different from the definition given in 

[17], in that we consider the start time of an error event as the time of its occurrence 

as opposed to the end time as in [17]. We assume that the channel is stationary. 

Thus, a first event error is independent of the time and time 0 can be chosen without 

loss of generality. 

6.1    Trellis Search Algorithms 

Consider the generalized DFSE receiver of Fig. 3. Let {an} be the sequence of symbols 

transmitted and {bn} (bn : an_l5 an_2,..., an-j) be the sequence of states in the path 

of {an} in the reduced trellis of the DFSE receiver (with memory order J). Let {än} 

be a hypothetical sequence of symbols and {&„} be the corresponding sequence of 

states in the reduced trellis that diverges from the correct sequence of states at time 

unit 0 and re-merges with it at a later time (say k), i.e. 

bn = bn for n = 0, k and bn ^ bn for 0 < n < k. (49) 

A first event error occurs at time 0 if the reduced trellis search algorithm picks {än} 

as the survivor sequence over {an}. It follows from (40) that the event occurs if the 
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metric accumulated on the incorrect path is greater than the metric accumulated on 

the correct path i.e. 
Jfc-i _ fc-i 

E r(«nÄ) > E rK A) (so) 
n=0 n=0 

where {T(an,bn)} and {r(5n,6n)} are branch metrics corresponding to the paths 

{an} and {an} respectively, computed using (41). Note that the conditional decisions 

{an_/(6n)} and {an_/(fen)} which are fed back to compute the branch metrics, are taken 

from the paths corresponding to the sequences of states {bn} and {bn} respectively. 

Thus, än_i(bn) = an_j and an_/(6n) = än_j and (50) can be written in matrix notation 

as 

2Re{äf (P-1)^} - g^RkQkäk > 2Re{af (P-1),^} - ^RkQkQk        (51) 

where a* = [a0, au ..., ak-1]T, a* = [ä0, ä1?..., ä^Y and x^ = [s(0), x(l),..., z(fc - 

1)] . The matrices (P-1)*, Rk and Qk are principal submatrices7 of dimension k of 

the matrices P_1, Ä and Q respectively given by (18), (19), (20) and (21). Defining 

ej(. = a* - a* as the error sequence and noting that RkQk = QkRk, (51) can also be 

expressed as 

2Re{ef(P-1)fc^} > e*RkQkek + 2Re{efR^a*} (52) 

From (10), it follows that 

xjc = PkxN{Sa + u) (53) 

where PkXN is the k x N matrix comprising the top k rows of the matrix P. Using 

(53), (52) can be written as 

2Re{ef (P-^Pfcxtfu} > <£RkQk§k + 2Re{£RkQkOj,} - 2Re{ef {P^^NSO} 

(54) 

which is the condition for the error event e : g^ is eliminated in favor of aj. + e*. 

(with a* and e*. given i.e. non-random). The error event e is associated with the error 

sequence e*. The length of the error event is k - J symbols, not counting the last J 

components of e^ which must be zero as bk = bk according to (49). 

6.1.1    MLSE 

In the case of maximum likelihood sequence estimation, the memory order is J = Lv 

(Viterbi algorithm). Thus, we have ek-i = 0 for i = 1,2,..., Lv. Using the fact that 

7The principal submatrix of dimension A of a square matrix A (with dimension > Jfc) is obtained 
by erasing all but the first k rows and columns of A. 
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RkQk is a square banded matrix with L < Lv elements in the right band8, we get 

e^RkQkek = eg^Sk-L^-u (55) 

egRkQkO* = ef_^ Sk-Lv xfcßfc (56) 

where ek_Lv = [e0, eu ..., efc-L„_i]T and Sk-Lvxk is a (k - L„) x A; matrix comprising 

the top k- Lv rows of Sk. Since (-P_1)fc is a banded matrix with // < Lv elements in 

the right band), the top k-Lv rows of (P~1)kPkxN are given by [h-Lv\Ok-LvxN+Lv-k] 

and we have 

egiP-^kPkxNSa = e^Sfc-L.xfeO* (57) 

Combining (55), (56) and (57) with (54), we see that the error event e occurs in an 

MLSE receiver if 

2Re{ef_LvMfc-L,} > ef-L.Sk-Lvek_Lv. (58) 

Given the error sequence e*, the left hand side of (58) is a Gaussian random variable 

with mean 0 and variance ^N0eg_LvSk-Lv§k-Lv- Thus, the probability of the error 

event e is given by 

/i   I .H _ .c.   . *..   -  \ 
(59) Pr(e) = Q 

*\ 

^k-Lv
Sk-Lvek_Lv 

iVo 
/ 

It follows from (49) and (59) that the first event error probability can be overbounded 

using a union bound, as 
'%) 

PFEE < Y, PeQ ( 
e£E \ 2y/W0l 

(60) 

where E is the set of all error sequences e = e0, ei,..., ej_i (such that / > 0, ej_i 7^ 0) 

with less than J consecutive zeros in the midst of the sequence, pe if the a priori 

probability of the error sequence e and 8(e) is known as the distance of the error 

sequence e and is given by 

8(e) = JePSie 
i-x 1-1 

A i=0j"=0 
(61) 

Notice that the first event error probability given by (60) is independent of the 

processing filter P and the form of the branch metric used. It is the same as obtained 

by Forney [11] and Ungerboeck [22] for MLSE receivers with specific processing filter 

and branch metric combinations. Our result validates the fact that the Viterbi al- 

gorithm does in fact yield maximum likelihood sequence estimates regardless of the 

8The elements on the right hand side of (but not including) the diagonal. 
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form of the processing filter as long as the inverse processing filter P"1 exists and the 

trellis is expanded by If — L symbols if the number of anticausal taps If of P_1 is 

greater than the channel memory L. 

6.1.2    DFSE 

For a memory order J < L, the first term on the right hand side of (54) depends 

on the error sequence e^ only while the other two terms depend, in addition, on 

the transmitted sequence a. These terms do not cancel for a general transversal 

processing filter P and thus represent "raw or untreated" interference. The error 

performance of a DFSE receiver thus depends on the processing filter unlike the case 

of an MLSE receiver. Moreover, the error performance also depends on the branch 

metric formulation employed by the reduced trellis-search algorithm. This can be seen 

by noting that the two branch metric formulations: Rk = Q% = Fj? and Rk = Ik, 

Qk = Sk result in different error distance and interference terms as Fk
HFk / Sk- Note 

that the asymptotic equivalence of the matrices S and FHF (for N large) assumed 

in Section 3 does not apply here, as error events are generally short, i.e. k ^ N. 

In view of the above discussion, it is desirable to have a processing filter + branch 

metric combination which eliminates the problem of untreated interference and max- 

imizes the error distance. We devise the notion of "unbiasedness" to describe such 

DFSE receivers whose error performance is not affected by untreated interference (or 

bias). 

Definition 6.1 A DFSE receiver is termed "unbiased" if the error event e is con- 

ditionally independent of the transmitted sequence a given the error sequence e^, for 

any memory order 0 < J < Lv. 

It can be expected that an unbiased DFSE receiver would have good error performance 

for any memory order. On the other hand, a biased DFSE receiver would be affected 

by untreated interference components and could thus exhibit an error floor. In order 

to obtain an unbiased DFSE receiver, one must find a processing filter that causes 

the cancelation of the interference terms in (54) for any memory order. It follows 

that such a processing filter P must satisfy the condition: 

(P-^kPkxNS = RkQk[h\Okxir-k]    V 1 < k < N (62) 

or equivalently (noting that RkQk = Q%Rk f°r tne cases in hand): 

{P-1)kPkxN = Q?{Q~H)kxN    Vl<k<N (63) 
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where the matrix (Q~H)kXN comprises the top k rows of the matrix Q~H. 

It follows from (54) and (62) that the probability of the error event e for an 

unbiased DFSE receiver is given by 

Pr(£) = q ( **<>*> ) (64) 

The first event error probability for an unbiased DFSE receiver can then be over- 

bounded as 

PFBB < £ PeQ ( Ä) (65) 

where E' is the set of all error sequences in the set E with J zeros appended and 8(e) 

is the distance of the error sequence e defined, in general, as 

A        fa*Q* (66) 

yleHRkQk{S-^)kRkQke 

where the subscript k denotes the length of the composite error sequence e. Note that 

the above definition of the error distance includes the effect of noise enhancement (the 

term in the denominator of (66)). 

A first event error analysis of the alternative DFSE receiver of Fig. 4 is similar to 

the analysis presented above and is given in Appendix A. 

6.2    Tree Search Algorithms 

Consider the generalized M-algorithm receiver of Fig. 5. Let {a„} be the sequence of 

symbols transmitted. Let ^(i) (i G {0,1,..., MA - 1}) be the MA paths extended 

at a time unit k > log^ M, including the correct path ajt(O) = a^. A first event error 

occurs at time 0 in the M-algorithm receiver if the tree search algorithm eliminates 

the path ak. It follows from (48) that the error event occurs if the metric accumulated 

on the correct path is less than the metric accumulated on at least M of the other 

extended paths, i.e. 

M{u) < Miau)) (67) 

for at least M values of i G I = {1,2,..., MA - 1}}. Let {<7„(i)}£=o be the sequence 

of states9 in the path of ^(i). Then, using (48), (67) can be written as 

E IKCO.^O) > E r(on,aB(0)) (68) 
n=0 n=0 

9The notion of state in a tree search algorithm is as denned in Section 5. 
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Defining ek(i) = ak(i) — ak as an error sequence and following the development of 

(54), we get equivalently 

2Re{ek{if(p-1)kPkxNu}   >   ek{i)H RkQk§k{i) + 2Re{ek{i)HRkQkak} 

-2Re{efc(0
H(P-1)fcPfcXAr5a} (69) 

for at least M values of i £ I. This is the condition for the error event e' : ak is 

eliminated in favor of M of the extended paths g^ + ek(i) (with a^. and e^i) given, 

iei). 
Notice that like the case of the DFSE receiver, the error performance of the gener- 

alized M-algorithm receiver depends on the processing filter and is, in general, affected 

by untreated interference components. Thus, the concept of "unbiasedness" also ap- 

plies to M-algorithm receivers. Specifically, we define a class of unbiased M-algorithm 

receivers as follows 

Definition 6'.2 An M-algorithm receiver is termed "unbiased" if the error event e' 

is conditionally independent of the transmitted sequence a given the error sequences 

e*(0(*eJ). 

Clearly the processing filter P of an unbiased M-algorithm receiver must satisfy (63) 

as in the case of unbiased DFSE receivers. The probability of the error event e' for 

an unbiased M-algorithm receiver is, thus, given by 

Pr(e') = Pr (X{&({)) > efc(*)HAfcQfce*(0»    for M values of *' G X) (70) 

where X(ej.(i)) are jointly Gaussian random variables with mean zero and covariance 

E[X(s»(t))**Ca(i))] = 4Ar0e*(0*i43*(S-1)fci4$*eA(j). 

7    Unbiased receivers 

In Appendix B, we show that the processing filters that satisfy the unbiasedness 

conditions of (63) and (133) (corresponding to the case where the front-end filter is 

matched to the overall channel response and where it is matched to the transmit filter 

response respectively) are unique (within a scaling factor) and are given by 

P = Q~H (71) 

and 

P = Q'~H (72) 
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respectively. In the first case, the processing filter P that results in an unbiased re- 

ceiver when used with a reduced trellis or tree search algorithm with branch metric 

formulation R = QH = FH, is the noise-whitening filter F~H, while for the for- 

mulation R = I and Q — S, it is the zero-forcing filter S1-1. In the second case, 

the processing filter in the case of branch metric formulation R' = Q'H = F'H, is 

the appropriate noise-whitening filter F'~H, while for the formulation R' = I and 

Q' = $, it is the appropriate zero-forcing filter $_1. Note that the processing filters 

in both cases correspond to the autocorrelation spectrum of the front-end filter in the 

receiver. The processed statistics given by 

x = RHa + Q~Hu (73) 

in the first case, and 

J = ItHCa + Q'-Hu' (74) 

in the second case, depend on the past transmitted symbols only and not on any 

future transmitted symbols. Thus, the statistics fed to a reduced trellis or tree search 

algorithm must have causal dependence only, for unbiased operation. Note that it is 

also necessary to match a given processing filter with the proper branch metric of the 

reduced trellis or tree search algorithm in order to achieve unbiasedness. 

We considered two additive decompositions of the likelihood metric in each case 

of the front-end filter, which led to two different unbiased receivers. The two branch 

metric formulations correspond to the two decompositions of the front-end filter au- 

tocorrelation matrix (S or $)- one actually being no decomposition and the other 

being the unique Cholesky decomposition. Note that there is no other decomposition 

of a positive definite and banded matrix of the form RQ (or equivalently RHQH), 

where the matrix R is upper-triangular and both matrices R and Q are banded. The 

matrix R is constrained to be upper-triangular to get a causal form for the additive 

metric. Both R and Q are constrained to be banded in order for the branch metric 

to have finite complexity. Thus, our treatment of unbiased receivers is complete in 

this sense. 

In the case of an infinite length transmitted sequence, the processing filters de- 

scribed above have infinite impulse responses. In practice, these filters can be im- 

plemented by truncating the impulse response at a sufficient length. However, this 

leads to some bias (untreated interference) in the receiver. Thus, there is no truly 

unbiased DFSE or M-algorithm receiver for an infinite length transmitted sequence. 

An exception to this is the case of Nyquist pulse-shaping at the transmitter and 

21 



transmit-filter matched-filtering at the receiver. No processing filter is required in 

this case for unbiased operation. 

7.1    Receivers with a whitening filter 

One type of unbiased DFSE and M-algorithm receivers have a noise-whitening filter. 

Henceforth, they will be referred to as whitening filter DFSE (WF-DFSE) and whiten- 

ing filter M-algorithm (WF-MA) receivers. In case the front-end filter is matched to 

the overall channel response with autocorrelation spectrum S (standard matched 

filtering), the noise-whitening filter is given by F~H. The branch metric for the WF- 

DFSE(S) and WF-MA(S) receivers10 is obtained by replacing P'1 = R = QH = FH 

in (41) and (24) respectively. An upper bound on the first event error probability 

of the WF-DFSE(S) receiver is given by (65), with the error distance obtained by 

substituting Rk = Qk — Fj? in (66) and noting that 

(O* = (F-xF~H)k = (F~l)k(F-H)k = (Fk)-\Fk)-
H (75) 

where the second and third equalities follow from the identity: 

If X and Y are N x N matrices and Y is upper-triangular (or X is lower- 

triangular), then 

(XY)k = XkYk (76) 

where (XY)k is the principal submatrix of dimension k < N of the matrix XY. 

The error distance is then given by 

%) = \\Fke\\ (77) 

In case the front-end filter is matched to the transmit filter response with autocorre- 

lation spectrum $ (transmit matched filtering), the noise-whitening filter is given by 

F'~H. The branch metric is obtained by replacing P_1 = R' = Q'H = F'H in (47) 

and (38) respectively for the WF-DFSE(T)11 and WF-MA(T) receivers. The error 

distance for the WF-DFSE(T) receiver follows from (135) as 

%) = 11 Well. (78) 

Note that the two expressions for the error probability of the WF-DFSE receivers 

differ from each other due to the different phase characteristic of the whitened channel 

10Where 'S' stands for standard matched filtering. 
"Where "I" stands for transmit matched filtering. 
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in each case. In the first case, the whitened channel {f(n)} has minimum-phase while 

in the second case, the whitened channel {f'(n) * c(n)} has mixed phase, in general. 

We will see later that the error distance and hence the error probability is superior 

in the case of the minimum-phase channel. Note that the first event error probability- 

expressions derived here are equivalent to the expression obtained in [6]. 

7.2    Receivers with a zero-forcing filter 

The other type of unbiased DFSE and M-algorithm receivers consist of a zero-forcing 

filter. Henceforth, they will be referred to as zero-forcing filter DFSE (ZF-DFSE) and 

zero-forcing filter M-algorithm (ZF-MA) receivers. In the case of standard matched 

filtering, the zero-forcing filter is given by S'1. The branch metric for the ZF-DFSE(S) 

and ZF-MA(S) receivers is obtained by replacing P'1 = Q - S, R = I in (41) and 

(24) respectively. Substituting these values in (66) gives the error distance for the 

ZF-DFSE(S) receiver as 

8(e) =    .     -HSk~ ■ (79) 
y/ePSuiS-^tSte 

In the case of transmit matched filtering, the zero-forcing filter is given by $-1. The 

branch metric is obtained by replacing P-1 = Q' = §, R' = I in (47) and (38) 

respectively for the ZF-DFSE(T) and ZF-MA(T) receivers. The error distance for 

the ZF-DFSE(T) receiver follows from (135) as 

sleHCg$k{$-i)k$kCke 

Note that the zero-forcing filter $_1 in the latter case does not null out inter-symbol 

interference entirely. It decorrelates only the part due to the autocorrelation of the 

front-end filter response while the part which is due to the dispersion caused by the 

medium response {c(n)} is left untouched. 

8    Biased receivers 

Several biased receivers are possible. One example is a DFSE receiver considered in 

[20]. It comprises a front-end filter matched to the overall channel response followed 

by the noise-whitening filter P = F~H. The reduced trellis search algorithm uses the 

branch metric formulation R = I, Q = S. To see that the receiver is biased, note 

that F^Fk ^ Sk (k <C N). It follows from (54) that the error event e depends on the 

transmitted sequence a through (Sk — FJ^Fk)^. 
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Note that a transversal processing filter adds complexity to a receiver. The com- 

putation of a noise-whitening or zero-forcing filter requires channel inversion and 

factorization operations. Moreover, the filter has to track the variation in the channel 

if the channel is time-varying. One solution to this problem is to omit the processing 

filter and pass the output of the matched filter directly to the trellis or tree search 

algorithm, resulting in a class of receivers which we refer to as matched filter receivers. 

Matched filter receivers, however, are biased. In other words, their error performance 

is limited by untreated interference components. Some useful matched filter receivers 

are described in the following sections. 

8.1    Matched filter receivers 

An important type of matched filter DFSE (MF-DFSE) and matched filter M-algorithm 

(MF-MA) receivers have a front-end filter matched to the overall channel response 

followed by a reduced trellis or tree search algorithm with branch metric obtained by 

replacing P'1 = R = I, Q = S in (41) and (24) respectively. The MF-DFSE receiver 

of this type was proposed in [5, 28]. The MF-MA receiver of this type was considered 

in [26, 29]. An upper bound on the first event error probability of the MF-DFSE(S) 

receiver was derived in [15, 14]. It follows from (54) as 

'£(e)-7(e,a), 

PFEE <   22 Peßa 
e£E' 

Q 
2^W0 

(81) 

where 8(e) is the error distance given by 

S(e) = y/eHSke (82) 

and 7(e, a) is the untreated interference given by 

7(e,fi) = 2Re{£H<?£_JöJt}/%) (83) 

where a* = [ak,..., ak+r,-j-i]T, £ is the tail of the error sequence e given by12 

1 = [e*-L, • • •, ek-j-i]
T 

and S is an L x L matrix given by 

s(L)   ■■■    s(2)       s(l) 

0 s 

(84) 

0 

s(L)   s(L-l) 

0 s{L) 

(85) 

12 In (84), k (> J) denotes the length of the sequence e and e* = 0 for i < 0. 
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McLane investigated truncated-state Viterbi detectors (TSVD) with standard matched 

niters in [18]. The difference between the TSVD algorithm of [18] and the MF-DFSE 

algorithm is that the MF-DFSE algorithm uses conditional tentative decisions to can- 

cel the tail of the channel response while the TSVD algorithm simply ignores it. The 

error bounds obtained by McLane indicate the presence of untreated interference. 

However, the untreated interference in his bounds arises due to ignoring the tail of 

the channel response in the TSVD algorithm. Such interference term does not appear 

in the bounds for DFSE as it is canceled by means of tentative conditional decisions 

in the DFSE algorithm. The untreated interference component that appears in the 

DFSE bound of (81) is, however, absent in McLane's bounds. The cause of this 

latter untreated interference component can be intuitively explained as follows. The 

matched filter statistics at the input of a reduced trellis search algorithm depend on L 

past and L future transmitted symbols (cf. (7)). The reduced trellis search algorithm 

(with memory order J) selects survivor paths extending up to time n on the basis of 

the metric accumulated up to time n + J. This premature elimination of candidate 

paths does not account for the interference arising from the L — J future transmit- 

ted symbols. Clearly, this type of untreated interference affects both the DFSE and 

TSVD algorithms. Hence, the bounds in [18] should be corrected to include this 

interference component. 

A second type of matched filter receivers is obtained in the case the front-end 

filter is matched to the transmit filer response. The reduced trellis and tree search 

algorithms of MF-DFSE(T) and MF-MA(T) receivers employ the branch metric given 

by (47) and (38) respectively with P_1 = R' — I,Q' = $. Substituting these values 

in (131), we see that an upper bound on the first event error probability of the MF- 

DFSE(T) receiver is given by (81), where the error distance 5(e) is given by 

6{e) = e?C?$kCke (86) 

and the untreated interference j(e,a) is given by 

7(e,a) = 2Re{f(CLdXL-j)
H$Cäk}/m (87) 

where a*. = [ak-Lc,..., ak,..., ak+Ld-i]
T and C and $ are Ld x L and Ld x Ld matrices 

respectively, given by 

•   c(l)    c(0)      0      •••       0 

C = 

c{Lc) 

0 

0      c{Lc)   •••   c(l)   c(0) 

(88) 
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$ 

<K-Ld) 

0 

#-2) #-1) 

(89) 
; •••   <f>{-Ld)   cf>{-Ld + l) 

0        •••        0 <f>(-Ld) 

The matrix Ci,dxL-J comprises the first L — J columns of the matrix C. 

Note from (81) that the untreated interference increases or decreases the error dis- 

tance of the MF-DFSE receivers with equal probability in the case of i.i.d. transmitted 

symbols. Due to convexity of the Q(-) function, the error performance is, however, 

dominated by the destructive effect of the untreated interference and is, thus, rather 

poor. Without giving an expression for the error probability of the MF-MA receivers, 

it can be noted that the MF-MA receivers also suffer from untreated interference. 

8.2    Bias-compensated matched-filter receivers 

An intuitive solution to the problem of untreated interference (bias) in matched filter 

receivers is to cancel the bias by means of tentative decisions. With reliable ten- 

tative decisions, the error performance can be expected to improve significantly. A 

bias-compensated MF-DFSE(S) (BC-MF-DFSE(S)) receiver was proposed in [15]13 

where the front-end filter is matched to the overall channel response and conventional 

matched filter decisions are used to cancel bias. The algorithm computes path met- 

rics as in MF-DFSE(S) using (40). However, conditional decisions are made (and the 

corresponding survivor paths are selected) using the modified rule: 

ocn-j{ßn) = aTgmax[M(ßn) + T(an,ßn) - bias(/?„)] 
«n-J 

(90) 

where M(ßn) and r(an,/?n) are the accumulated metric and the branch metric of 

MF-DFSE(S) respectively and the bias term is given by 

bias(/?n)=/xf5f_J5] (91) 

where /^ = [rjn_L+1,... ,7]n„J„1,r]n-j]
T are the L - J most recent symbols in the 

survivor path associated with state ßn, än = [än+1,... ,än+L_j]T are tentative deci- 

sions on future symbols obtained by using conventional symbol-by-symbol detection 

as an = sign(zn) and SL-J is the principal submatrix of dimension L — J of the ma- 

trix S. The bias term follows from the expression for the untreated interference given 

13: The algorithm is referred to as modified unwhitened DFSE (MUDFSE) in [15]. 
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by (83). A reduced computation form of the algorithm (BC-MF-DFSE~) uses the 

approximate bias: 

bias(/?n) « a*n_j[s(- J - 1),..., s(-L))an (92) 

A simplified error performance analysis of the BC-MF-DFSE(S) algorithm can be 

found in [15]. 

Note that a bias-compensated MF-MA can also be derived on the same principle as 

described above for BC-MF-DFSE i.e. using tentative decisions to cancel untreated 

interference components. The untreated interference in the case of MF-MA (with 

the standard matched filter) follows from (69) as 2Re{£(i)HSHak}/'<$'U(O). where 

£(i) = [efc_i(i),... ,ek-i(i)]
T is the tail of the error sequence e(i) corresponding to 

the ith contender path and a*. = [ak,... ,ak+L-i]T- The interference can be canceled 

by choosing survivor paths in the M-algorithm on the basis of the accumulated metric 

minus a bias term, computed using tentative decisions. Note that the bias term in this 

case depends on the last L symbols in the survivor path rather than the last L — J, as 

in the case of BC-MF-DFSE. This is because unlike DFSE, the M-algorithm is a tree 

search algorithm where contender paths are not constrained to merge. Since contender 

paths in DFSE always agree on the J most recent symbols, the bias term does not 

depend on them. However, this is not the case with the M-algorithm. Consequently, 

bias compensation requires more computation in the case of MF-MA. 

A bias-compensated MF-DFSE receiver can also be obtained for the case of trans- 

mit matched filtering (BC-MF-DFSE(T)). In this case, the algorithm computes path 

metrics as in MF-DFSE(T) using (44). Conditional decisions are made using the 

modified rule: 

K-Äßn) = arg max[A4'(/3n) + r'(an, ßn) - W(/?B)]. (93) 
a-n-J 

where M'(ßn) and T'(an, ßn) are the accumulated metric and the branch metric of 

MF-DFSE(T) respectively and the bias term is given by 

biasW = ^(CLdXL-j)
H^Cgfn (94) 

where £/ = K_L+i,... ,v'n-j-i,Vn-j]T are the L ~ J most recent symbols in the 

survivor path associated with state ßn and 5^ = [r]'n_Lc+1, ■■■■>v'n-> ^n+i> • • • > ^n+ij > 

where {ä'n} are tentative decisions obtained as a'n = sign(^). The bias term follows 

from (87). 
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9    Truncated memory MLSE receivers 

Linear pre-filtering was proposed in [10, 19] as a means to truncate the memory 

of the Viterbi algorithm in an MLSE receiver. In [10], the overall response of the 

channel/pre-filter combination is forced to a truncated and causal desired impulse 

response (DIR) of acceptably short span (say J symbols). Pre-filtering colors the 

noise in the output statistic. However, the Viterbi algorithm is used on the pre- 

filtered statistic as if the noise were white. An important difference between this 

approach and our generalized DFSE approach is that the receive filter in the case of 

DFSE is not specifically designed for a memory order. This allows one to vary the 

memory order of the trellis search algorithm without changing the receive filter. In 

the following, we look at the error performance of the pre-filtering method. 

Let x be the statistic obtained after matched filtering/noise-whitening, i.e. 

x = Fa + w (95) 

where w is a white Gaussian noise sequence with covariance Efiuur^] = N0I. Let 

G be an N x N lower-triangular banded Toeplitz matrix (with band width J < L) 

representing the DIR and H be the corresponding pre-filter matrix, given by HF = G. 

The pre-filtered statistic is given by 

xp = Ga + wp (96) 

where vf = Hw is the filtered noise. 

Consider a path {an} in a truncated memory MLSE (TM-MLSE) receiver that 

diverges from the correct path {an} at time 0 and remerges with it at a later time 

k. A first event error occurs at time 0 if {ön} is picked as a survivor path. The 

error event occurs if the metric accumulated on the incorrect path is greater than the 

metric on the correct path, i.e. 

-Wsd-G&W^-H-GuatW*. (97) 

Using (96), we get 

2Re{efGfteJ} > \\Gkek\\2. (98) 

where e*. = öj. — a^ is the error sequence. Note that H is a lower-triangular ma- 

trix. Therefore, E[«£u£ ] = NoHkH]? and the probability of the error event e: the 

sequence Oj. is eliminated in favor of the sequence ak + ek, is given by 

w = Q g|) • m 
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where 5(e) is the error distance given by 

5(e) =    .      I|gfc-112 (100) 
Je«GXHkH*Gke 

10    Symbol error probability 

Consider a path in the reduced trellis of a DFSE receiver that diverges from the correct 

path at time rai and remerges with it at a later time n2. Due to feedback incorporated 

in the reduced trellis search algorithm, the event that the correct path is eliminated 

in favor of the incorrect path (an error event) depends on previous error events. The 

effect of the error propagation is, however, small in DFSE receivers as compared to 

simple decision feedback equalizers (DFE). This is because the decisions fed back in 

DFSE are conditioned on the state of the reduced trellis unlike the decisions in DFE. 

Moreover, the effect of error propagation is small at medium to high signal-to-noise 

ratio (SNR). This was shown to be the case for WF-DFSE receivers in [6, 7]. Assuming 

no error propagation (i.e. a separation of more than L — J correct decisions between 

error events), the probability that an error event occurs in a DFSE receiver can be 

upperbounded by the first event error probability [17]. The symbol error probability 

for unbiased DFSE receivers can then be upperbounded as [11, 6] 

Ps < E wfeKQ (M) (101) 

where w(e) is the number of symbol errors entailed by the error sequence e, 5(e) is the 

distance of the error sequence and pe is the probability that a transmitted sequence 

can have e as an error sequence. For i.i.d. transmitted sequences and input alphabet 

A = {±1, ±3,..., ±(\A\ - 1)} (for \A\ even), we have 

pe=fcn~J|>4|J|enl (102) 
n=0 l^l 

which reduces to 

Pe_ = 2"w^ (103) 

in the case of BPSK modulation. The error distance 5(e) is given by (77) and (78) 

for WF-DFSE receivers with the standard and transmit matched filters respectively. 

The error distance for ZF-DFSE receivers given by (79) and (80), depends on the 

location and length of the error event. This is because the correlation in the noise 

samples given by S'1 varies over the length of the data sequence. However, note that 
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the noise correlation is constant in the middle of a long sequence (i.e. S_1 is nearly 

Toeplitz except at the edges for N ~^> L). In Appendix C, we obtain expressions 

for the error distance that assume the noise correlation to be constant. The error 

distance in the case of standard and transmit matched filtering is given by (150) and 

(151) respectively. The symbol error probability bound of (101) also holds for the 

truncated memory MLSE receiver of Section 9 with the error distance given by (100). 

In this case, it is a strict upper bound as there is no decision feedback and thus no 

error propagation. 

For moderate SNRs, the upper bound given by (101) is dominated by the term 

Qfe) I W(£)P£ (104) 
—       min 

where E'min is the set of error sequences in E' that achieve the minimum distance 

(known as minimum distance sequences) 

6min = mm6(e). (105) 

The symbol error probability for MF-DFSE receivers can similarly be upper- 

bounded as 
'5(e)-j(e,aY 

P,<J2 w(e)p£Ea 
eeE' 

Q 
2^/WQ 

(106) 

where the error distance 5(e) and the untreated interference j(e, a) are given by (82) 

and (83) for the case of standard matched filtering and (86) and (87) for the case of 

transmit matched filtering respectively. Due to the presence of untreated interference, 

the upper bound in (106) is not dominated by the minimum distance error sequences 

only, unlike the bound for unbiased DFSE receivers. Higher distance error sequences 

should also be considered with worst case interference. 

11    Error distance 

The various DFSE receivers derived in the previous sections can be compared on the 

basis of their error distance. Error distances characterize an upper bound on the 

symbol error probability. In the case of an unbiased DFSE receiver, the minimum 

error distance squared per noise spectral density can be considered as its effective SNR 

[6]. For a given channel and memory order, the distance of a given error sequence 

depends on the type of the DFSE receiver.   Specifically, it depends on the receive 
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filter and the branch metric.    In this section, we compare the error distance for 

various receivers. 

Let e = [e0, eu ..., efc_i_j, 0,..., 0]T be an error sequence of length k belonging to 

the set E'j (the set E' of allowable error sequences for a DFSE receiver with memory- 

order J < L). Let e+ = [eT, 0,..., 0]T (length I = k + L - J). Then, e+ £ E'L, the 

set of allowable error sequences for an MLSE receiver. The distance of this sequence 

in the case of an MLSE receiver is given by 

S{e+) = e%Ste+ = eHSke (107) 

which is equal to the distance of the corresponding error sequence in the case of a 

MF-DFSE receiver with the standard matched filter. Let E" be the set of all error 

sequences in E'j appended by L — J zeros (L > J). Note that E'J C E'L, i.e. the 

upper bounds given by (101) and (106) for DFSE receivers are determined using 

only a subset of the error sequences considered for an MLSE receiver14. Thus, if 

the untreated interference in the case of MF-DFSE(S) could be removed ideally with 

the aid of a genie, the upper bound for the receiver would be lower than MLSE. In 

fact, the error rate performance of the genie-aided receiver is generally better than 

MLSE in moderate SNRs where error propagation is negligible. For the other DFSE 

receivers, we will show that the error distance is smaller, in general, compared to the 

MF-DFSE(S) receiver (or an MLSE receiver). 

11.1    WF-DFSE 

Note that 

4Sie+ = e$SeN = \\FeN\\> = ||F,e+||2 = ||Ffce||2 + ||*£||2 (108) 

where eN = [eTO,..., 0]T (length N) and * is an L- J x L- J matrix given by 

* = 

f(L) 
0 

•••     /(«/ + !) 

f(L)   f(L-l) 

0 f(L) 

(109) 

The matrix ^ is illustrated in Fig. 6.   The distance of a given error sequence is thus 

14The error sequences excluded have more than J — 1 consecutive zeros in the midst and hence 

cause a reduced trellis encoder with memory J to flush. 
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Figure 6: Illustration of \I> within Fi. 

smaller for WF-DFSE(S) as compared to MF-DFSE(S). 

Let 

v(i — j)   0 < i — j < L 
v(i,j) = < 

0 otherwise 
(110) 

be the coefficients of the lower-triangular Toepltiz matrix V = F'C. Then, similar to 

(108), we can write 

4S<e+ = \\Flde+\\2 = ||^C*£||a + ||#£||s 

where ^isanL — J x L — J matrix given by 

(111) 

* 

v(L) 

0 

•     •••     v(J+l) 

■ v{L)   v(L-l) 

■ 0 v(L) 

(112) 

Note that the matrix F of the whitened channel coefficients {f(n)} (in the case 

of standard matched filtering), is invertible since F(z), the z-transform of {/(n)}, is 

minimum-phase (has all roots inside the unit circle). Similarly, F'{z), the z-transform 

of {/'(n)}, is minimum-phase. However, the z-transform C(z) of the medium response 

coefficients {c(n)} may be non-minimum phase. Therefore, V(z) = F'(z)C(z), the 

z-transform of the coefficients of the whitened channel {v(n)} (in the case of transmit 

matched filtering), is mixed-phase in general. The whitened channels in the two cases 

have the same magnitude response, as 

F\z-')F{z) = V\z-')V{z) = S(z) 
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where S(z) is the z-transform of the sampled channel autocorrelation function {s(n)}. 

Note that channels with identical magnitude response but different phase responses 

have different energy distribution among tap coefficients. The minimum-phase chan- 

nel has most of its energy contained in the leading tap coefficients, while the maximum- 

phase channel (with all roots outside the unit circle) has most of its energy contained 

in the lagging tap coefficients. Note from (108) and (111) that the loss in squared 

distance for WF-DFSE compared to MLSE is given by ||tf£||2 and |[#£||2 in the case 

of standard and transmit matched filtering respectively. The coefficients of the matrix 

\i> (belonging to the minimum-phase channel F) have smaller energy, in general, than 

the coefficients of the matrix i$. Thus, the loss in distance is smaller in the first case. 

11.2    ZF-DFSE 

In appendix C, we show that the error distance in the case of ZF-DFSE(S) is given 

by   . 
eHSke eHSke <n4. 

y/§PSk{S-i)kShe      JeHSke + fS* ,(S2'2)zA-J£ 

where (S^L is a submatrix of the matrix S'1 and is thus positive definite. Note that 

the second term in the denominator of the RHS of (114) is greater than zero as the 

matrix S is full rank (since s(-L) / 0). Thus, the error distance for ZF-DFSE(S) is 

less than MF-DFSE(S). Similarly, it can be shown that the error distance in the case 

of ZF-DFSE(T) is smaller than MF-DFSE(T). 

11.3    Optimum unbiased DFSE receivers 

In this section, we show that WF-DFSE receivers are optimum in the sense that they 

minimize the first event error probability of unbiased DFSE receivers. Equivalently, 

we show that WF-DFSE receivers maximize the distance of a given error sequence in 

the class of DFSE receivers that satisfy the unbiasedness condition, i,r 

eHRkQke (n5) 

^RkQkiS-^kRkQke 

with equality only if Qk = Fk, where (R, Q) = (I, S) or (FH, F) and 

eHC?R'kQ'kCke 

yJeHC?RkQ'k($-i)kRkQ'kCke 

with equality only if Q'k = Fi where (#, Q') = (/, $) or {F,H, F'). 
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To prove Proposition (115), we note that 

eHRkQke   =   eH{Fk)
H{Fk)-

HRkQke 

<    \\Fke\\\\(Fk)-
HRkQke\\ 

=   \\FkeyeHQHR*(S-l)kRkQke (117) 

where the inequality in (117) is the Schwartz inequality which becomes an equality 

only if A* = Qk = F?. The last equality in (117) follows from (75). Proposition (116) 

can be shown similarly. 

Comparing the error distance of the WF-DFSE receiver with the truncated mem- 

ory MLSE receiver of Section 9 (with the same memory order), we note that 

eHG^Gke   =   eHG%HkFke 

<   \\H?Ghe\\\\Fk&\\ (118) 

where Gk = {HF)k = HkFk follows from (76) as H is a lower-triangular matrix and 

we again use the Schwartz inequality. Thus, we get 

<JeHG%HkHgGke 

In conclusion, we see that the distance of a given error sequence for a DFSE 

receiver depends on the type of filtering and the branch metric. The distance for 

the MF-DFSE(S) receiver is the same as in the case of an MLSE receiver. For the 

unbiased DFSE receivers - WF-DFSE and ZF-DFSE, the distance is smaller. This 

is due to the fact that the standard matched filter collects all the energy of the pulse 

transmitted at a given time in the corresponding output sample (in other words, it 

maximizes the output SNR, given by \s(0)\2/No). The noise-whitening filter spreads 

out the signal energy into L + 1 output samples in the process of whitening noise 

(X) 1/(012 = l5(0)|2)- The linear zero-forcing filter decorrelates all interfering signal 
i=0 

components but enhances (and correlates) noise in the process. The reduced trellis- 

search algorithms that follow these filters recover part of the signal energy (or SNR) 

that is spread out but are unable to recover all of it. Thus, WF-DFSE and ZF-DFSE 

suffer from a loss of the effective SNR, while MF-DFSE(S) does not. Of course, the 

drawback with MF-DFSE is that the reduced trellis search algorithm is unable to 

resolve some anticausal interfering signal components. This problem is alleviated in 

BC-MF-DFSE where the untreated components are canceled using tentative decisions. 

If reliable tentative decisions can be obtained, the BC-MF-DFSE receiver presents an 

advantage over the unbiased DFSE receivers in terms of SNR. 
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The noise-whitening filter removes only the anti-causal signal components which 

is necessary for unbiasedness. The causal signal components forming the tail of the 

channel response are equalized using decision feedback which does not enhance noise. 

The zero-forcing filter on the other hand performs complete signal decorrelation. This 

leads to noise enhancement and a further loss of the error distance. Similarly, the 

use of pre-filtering to remove some of the causal signal components in a truncated 

memory MLSE receiver enhances noise. Thus, WF-DFSE has greater error distance 

than ZF-DFSE and truncated memory MLSE receivers with pre-filtering. Practically, 

error propagation slightly degrades DFSE performance at moderate SNRs. Error 

propagation, however, does not occur in a truncated memory MLSE receiver with 

pre-filtering as there is no decision feedback. 

12    Bound evaluation 

In this section, we describe a generating function method to evaluate the symbol 

error probability bounds given in Section 10. In [15], a generating function method 

was proposed to evaluate the error probability bound for the MF-DFSE(S) receiver 

and an approximate bound for the BC-MF-DFSE(S) receiver. Here, we describe a 

generating function method for unbiased DFSE receivers. 

Note that a generating function method has never been considered for WF-DFSE 

receivers. In [8] and [6], the minimum distance was used to approximate the symbol 

error probability. However, the approximation may not be very good depending on 

the system, even at high SNRs [21]. In [21], a stack algorithm was proposed to obtain 

a chosen number of the largest terms in the Union upper bound of (101). It was stated 

in [21] that a generating function method can not be applied to the case of DFSE 

because unlike MLSE, branch distances in DFSE can not be uniquely determined 

from pairs of error states due to decision feedback incorporated in the branch metric 

calculation. We note that the problem with the approach in [21] is that the branch 

distance depends onL + 1 error symbols (where L is the channel memory) while the 

states in the error state diagram of [21] represent «7 + 1 error symbols (where J < L 

is the memory order of DFSE). In the following, we show how an error state diagram 

used to obtain error distances in MLSE, can be modified in the case of DFSE. 

An error state diagram (ESD) in the case of DFSE enumerates the distance 5(e), 

the number of symbol errors w(e) and the a priori probability p(e) of all error se- 

quences e in the set of allowable sequences E'. Each path through the ESD cor- 

responds to an error sequence in E'. For WF-DFSE, ZF-DFSE and MF-DFSE, the 

35 



branch distance (defined later for each case) depends on L + l error symbols identified 

uniquely by a pair of error states, where an error state is defined as the value of L 

consecutive error symbols: {ej-L, ej-L+i,- ■ ■, ey-i}. Since, an error symbol can take 

on any of |.4|(|.4| - 1) + 1 values (including zero), the diagram has [|.4|(|.4| - 1) + 1]L 

error states or nodes, as in MLSE [25]. The nodes are connected to each other through 

branches. Since an error sequence in the set E' can have no more than J — 1 con- 

secutive zeros in the middle of the sequence, the nodes and branches that correspond 

to J or more consecutive zeros in the middle of the error path are expurgated. The 

modified error state diagram is shown in Fig. 7 for the case of binary symbol alpha- 

bet, channel memory L = 3 and memory order J — 1. The error states or nodes are 

ternary L-tuples that take values in {0,+2,-2}. The pairs of error states that are 

negative of each other have been combined, as in [25]. This is because the branch 

distances for such error states are identical, as we will see later. Note that with L = 3, 

there should be (33 - l)/2 = 13 non-zero error state pairs in the ESD. However, the 

nodes ±0± and ±0q= do not appear in the ESD of Fig. 7. Moreover, the nodes 0 ± 0, 

± ± 0, ± ^ 0 and ±00 have only one outgoing branch each. This is because the nodes 

and branches that correspond to a zero in the middle of the error path, have been 

eliminated because with J = 1, an allowable error sequences can not have any zeros 

in the middle of the sequence. The branches are labeled with the branch distance pa- 

rameter A and the number of symbol errors entailed by the transition as the exponent 

of dummy variable /. A factor of 1/2 is used to account for the a-priori probability 

of error if the transition involves an error. 

In the case of WF-DFSE, the error distance (squared) 82(e) is given by 

k-l+L-J 

62(e)=     £    h (120) 
3=0 

where k is the length of the error sequence e = {e0, eu ..., ek_i} 6 E'j and bj is the 

branch distance given by15 

(121) 

Note that the segment of an error path e between the node {ek-L, • • •, &k-\- j, 0,..., 0} 

(efc-i-j T^ 0) and the all-zeros node corresponds to the tail of the error sequence £. 

Note from (121) that the branches within this segment of an error path (which we 

15 In the case of transmit matched filtering, f(i) should be replaced by v(i). 
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Figure 7: Error state diagram for DFSE (L = 3, J = 1). 

refer to as tail branches) have distance zero. This is in accordance with (108) and 

(111), where the loss in squared distance (compared to MLSE) given by ||W£||2 and 

||^£||2 respectively, occurs on the tail branches. 

Table 1 lists the branch distance parameters A; for Fig. 7 in the case of WF-DFSE 

(also see footnote 15). The branch distance appears as the exponent of a dummy 

variable D. Let T(D, /) be the generating function for the error paths in the case of 

WF-DFSE, found by solving the state equations in the ESD of Fig. 7 simultaneously. 

The generating function can be series expanded as 

d_ 
di 

T(D,I) 
i=i       i 

(122) 

where Ni is the number of error path pairs (negative of each other) with distance 

8(1), per the number of symbol errors and the number of the corresponding mput 

sequences. Then, the symbol error probability bound of (101) for WF-DFSE can be 

computed as16 

P,< £2A^2(0 

r>*=Q L/^jw^J 
(123) 

16Note that for real symbol alphabet, the noise is real with power spectral density N0/2, 
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Table 1: Branch distance parameters for WF-DFSE (L = 3, J = 1) 

A0 = £>4'(°)2 Ax = ZWH/Wl2 

A2 = £>4[/(°W(i)]2 
A3 = D*fW2 

A4 = £>4[/(0)+/(l)+/(2)]2 A5 = D4[/(i)+/(2)]a 

A6 = D4[/(°)-/(i)-/(2)]a A7 = Z)4[/(°)+/(l)-/(2)]a 

A8 = £)4[/(i)-/(2)]2 A9 = D4[/(°)-/(i)+/(2)]2 

Aio = D4I/(°)+/(1)+/(2)+/(3)]2 An = £)4[/(o)-/(i)-/(2)-/(3)]a 

A12 = JD
4[/(°)-/(i)-/(2)+/(3)]2 A13 = £>4[/(°)+/(l)-/(2)-/(3)]2 

AM = D4y(°)+/(1)-/(2)+/(3)]a 
Ai5 = £,4[/(0)-/(l)+/(2)-/(3)p 

Axe = DWHWH/W-W A17 = Z)4[/(°)-/(l)+/(2)+/(3)]2 

A18 = D4[/(i)+/(2)+/(3)]2 
A19 = £4[/(i)+/(a)-/(3)]a 

A20 = D*[/(i)-/(a>-/(3)]a 
A21 = D4W-fW+fW2 

A22 = A23 = A24 = A25 = 1 

In the case of ZF-DFSE(S), the squared error distance is given by S2(e) = b2Jbd, 

where 
k-l+L-J 

bn=        £       Ki (124) 
3=0 

is the numerator distance and 

k-l+L-J 
bd=     £     hd,i 

3=0 
(125) 

is the denominator distance, and bnj and bjj are the corresponding branch distances 

which follow from (150) as 

bn>j = Re L* Lo)ej + 2 £ *(i)e;-<) } (126) 

6<« = < 

&n,j i = 0,1,..., fc -1 

iHSS_jS'L_jSL-ji j = k (127) 

0 otherwise 

Note that the numerator and denominator branch distances differ only at the tail 
branches according to (150). 
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Table 2: Branch distance parameters for ZF-DFSE(S) (L = 3, J = 1) 

A,- = Df^D?2' 

Ai.o = 5(0) AM = 5(0) + 25(1) 

Al,2 = a(O) - 25(1) Ai,4 = 5(0) + 25(1) + 25(2) 

Al,6 = 5(0) - 25(1) - 25(2) A1>7 = s(0) + 2s(l) - 2s(2) 

Ai,9 = s(0) - 25(1) + 25(2) Ai.io = 5(0) + 25(1) + 25(2) + 25(3) 

Ai.ii = 5(0) - 25(1) - 25(2) - 25(3) Ai,i2 = 5(0) - 25(1) - 25(2) + 25(3) 

Ai,i3 = 5(0) + 25(1) - 25(2) - 25(3) Ai,i4 = 5(0) + 25(1) - 25(2) + 2s(3) 

Ai,i5 = 5(0) - 25(1) + 25(2) - 25(3) Ax.16 = 5(0) + 25(1) + 25(2) - 25(3) 

Ai,i7 = 5(0) - 25(1) + 25(2) + 25(3) Al,3 = Ai^ = A^s = Ai^S-25 = 0 

A2li = AMfori = 0,l,...,21,25 

A2i22 = (5(2) + 5(3))[5'(0)(5(2) + 5(3)) + 25'(1)5(3)] + 5'(0)5(3)2 

A2l23 = s(2)[s'{0)s(2) + 25'(1)5(3)] + 5'(0)5(3)2 

A2,24 = (S(2) - 5(3))[5'(0)(5(2) - 5(3)) + 25'(1)5(3)] + 5'(0)5(3)2 
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Table 2 lists the branch distance parameters A; for Fig. 7 in the case of ZF- 

DFSE(S). Dummy variables D\ and D2 are used to enumerate the numerator dis- 

tance and the denominator distance respectively. Let T(Di,D2,1) be the generating 

function for the error paths in this case, which can be series expanded as 

d 
dIT(DuD2,I) = YJMiD\n{-l)Dh

2
d{l). (128) 

i=i       i 

where Mi is the number of error path pairs with numerator distance bn(l) and de- 

nominator distance &<*(/), per the number of symbol errors and the number of the 

corresponding input sequences. Then, the symbol error probability bound of (101) 

for ZF-DFSE(S) can be computed as 

P.< Y,2MiD^®D
hM    . (129) 

A similar approach can be applied to evaluate the symbol error probability bound 

for ZF-DFSE(T). A generating function method for MF-DFSE(S) was described in 

[15]. 

13    Performance results 

In this section, we compare the performance of the various receivers described in 

this paper via simulation and analysis. We consider BPSK modulation and single- 

user static time-dispersive AWGN channels. We consider the cases of a symbol- 

spaced channel model (symbol-rate sampling) and a half symbol-spaced channel model 

(fractional sampling). The receiver is assumed to have perfect estimates of the symbol 

timing and the impulse response of the channel. Each simulation was run for a count 

of 600 errors. 

The first example is taken from [21]. The overall channel response is given by 

symbol-spaced tap coefficients17 / = (0.6335,0.5456,0.4479,0.3167). The channel 

has memory L = 3 and is minimum-phase. Nyquist pulse-shaping is assumed. Fig. 8 

shows the bit-error rate (BER) performance of various receivers for the channel in 

Example 1 with standard matched filtering. The memory order for the DFSE receivers 

is set to J = 1. With memory order one, the minimum distance in the DFSE receivers 

is achieved by the error sequences ±(2, -2,0). For the MF-DFSE, WF-DFSE and ZF- 

DFSE receivers, the minimum distance as given by (82), (77) and (150) respectively, 

L 
"Normalized so that £ l/WI2 = 1- 

x"=0 
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Figure 8: BER performance of various receivers in Example 1. 

equals 0.7322, 0.6470 and 0.5936 respectively18. Fig. 8 shows the upper bound (UB) on 

the symbol error probability given by (101) and the minimum distance bound (MB) 

given by (104) for WF-DFSE and ZF-DFSE. Note that the bounds were obtained 

assuming absence of error propagation. The simulated BER is marginally higher than 

the upper bound for both receivers. In the simulations, final decisions were obtained 

at a lag of 30 symbols. The minimum distance bound converges to the upper bound 

at high signal-to-noise ratio (SNR) as minimum distance sequences dominate the 

performance. 

Also shown in Fig. 8 is the simulated performance of an optimum two-tap TM- 

MLSE receiver with desired impulse response (0.7071,0.7071) taken from [10]. Note 

that the WF-DFSE receiver performs better than the ZF-DFSE and TM-MLSE re- 

ceivers at all SNRs as discussed in Section 11.3. Although the zero-forcmg filter in the 

case of ZF-DFSE, performs more signal decorrelation (which results in noise enhance- 

ment) than the prefilter of TM-MLSE, ZF-DFSE performs better than TM-MLSE in 

this example. This is because, unlike the case of TM-MLSE, the trellis search algo- 

rithm in the case of ZF-DFSE takes into account the correlation in the noise samples 

and is thus able to recover some of the lost signal energy. 

18After dividing by two. 
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Figure 9: BER performance of various receivers in Example 1. 

The MF-DFSE receiver achieves the maximum error distance equal to that of the 

MLSE receiver. However, it performs quite poorly due to the presence of untreated 

interference components. Also shown in Fig. 8 is a biased WF-DFSE receiver with 

the configuration P'1 = FH, Q = S,R = I, considered in [20]. Again the effect of 

untreated interference is evident. The untreated interference arises due to a mismatch 

between the processing filter and the branch metric as discussed in Section 8. 

Fig. 9 shows the simulated BER performance of the WF-MA, ZF-MA and MF- 

MA receivers for the channel in Example 1. The number of paths in the M-algorithm 

receivers is set to M = 2. The WF-MA receiver obtains the best performance. 

The MF-MA receiver exhibits a (high) error floor like the MF-DFSE and the biased 

WF-DFSE receivers, all of which belong to the class of biased receivers. Fig. 9 also 

shows the BER performance of WF-DFSE(T) receivers on mixed-phase channels with 

symbol-spaced medium responses c = (0.4930,0.6745,0.3693,0.4070) (#1) and c = 

(0.4070,0.3693,0.6745,0.4930) (#2). The channels have the same magnitude response 

as the channel in Example 1, which is minimum-phase. Note that the performance 

deteriorates as the channel phase increases. The deterioration in performance is due 

to two factors: the increase in the distance loss with the channel phase as discussed 

in Section 11 and the increase in error propagation. The latter effect is not captured 
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in the upper bound, so the bound diverges as error propagation becomes significant. 

For our second example, the medium response is given by half-symbol spaced 

tap coefficients c = (0.6335,0.5456,0.4479,0.3167) (same as the minimum-phase 

channel of Example 1 but with fractional spacing). The medium response mem- 

ory is Lc = 3. We consider two different transmit filters specified by the sam- 

pled autocorrelation function <j> = (0.045,0.0,0.4053,1.0,0.4053,0.0,0.045) (Tl) and 

<f> = (0.33,0.33,0.33,1.0,0.33,0.33,0.33) (T2). The first one is a Nyquist-1 pulse 

(truncated to seven half-symbol samples) taken from [2, (5.5)] while the second one 

is arbitrarily chosen. The transmit filter memory is Lj. = 3. The overall channel 

memory is thus L = (Lc + Ld)/2 = 3. The memory order is chosen as J = 1 for the 

DFSE receivers. 

Fig. 10 shows the BER performance of various receivers for the two transmit 

filters (Tl and T2) with transmit matched filtering. In the case of Tl, the WF-DFSE 

receiver achieves close to MLSE performance while the performance of MF-DFSE is 

less than a dB worse. ZF-DFSE is not shown for the case of Tl as its BER is very 

close to WF-DFSE at all SNRs. Note that the zero-forcing filter in ZF-DFSE(T) 

decorrelates only the transmit filter response, unlike ZF-DFSE(S) where the zero- 

forcing filter decorrelates the overall channel response. For the case of T2, we show 

upper bounds for WF-DFSE and ZF-DFSE which are marginally lower than the 

simulated results due to error propagation. Note that WF-DFSE performs better 

than ZF-DFSE at all SNRs as in Example 1. MF-DFSE in the case of T2 is much 

worse than MLSE as the sampled correlations in the case of T2 are more severe than 

Tl. 

14    Conclusions 

We have presented a unified analysis of DFSE and M-algorithm receivers for channels 

with finite memory that examines the role of the receive filter and the branch metric. 

The analysis indicates that the error performance of certain receivers (called biased 

receivers) is affected by untreated interference components (bias) which arise due to 

a mismatch between the receive filter and the branch metric. We have shown that an 

unbiased receiver consists of a front-end filter (matched to the overall channel response 

or the transmit filter response) followed by the appropriate noise-whitening or zero- 

forcing filter and a reduced trellis or tree search algorithm. We have shown that the 

DFSE receivers with the noise-whitening filter (and the proper branch metric) are 

optimum among unbiased DFSE and truncated memory MLSE receivers (with pre- 
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Figure 10: BER performance of various receivers in Example 2. 

filtering) in the sense that they maximize the error distance. We have obtained novel 

receiver structures which employ transmit matched filtering and are thus suitable for 

adaptive channel estimation in the presence of excess signal bandwidth. We have 

obtained upper bounds on the symbol error probability of the various DFSE receivers 

and described a generating function approach to evaluate the bounds. Simulation 

and analytical results were presented for the various receivers using a symbol-spaced 

channel model and a fractionally-spaced channel model. The bounds were found to 

be tight in each case. 

A    Analysis of the alternative DFSE receiver 

Consider the DFSE receiver of Fig. 4. Following the treatment given in Section 6.1, 

we see that a first event error occurs at time 0 in the reduced trellis search algorithm 
of Fig. 4 if 

2R«{af Cf (P"1)4Zi}-flf Cf ÄigiCiä* > 2Re{a£C»(p-1)kai}-aZcFR'kQ'kCkak 

(130) 
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where x!k = [x'(Q), z'(l),..., x'(k - 1)]T and the matrices Ck, R'k 
and Q'k are principal 

submatrices of dimension k of the matrices C, R' and Q' respectively. Using (31), 

(130) can equivalently be written as 

2Re{efCf(P-1)*iWl/}    >   £C» R'kQkCkek + 2Re{e%Ck
HR'kQkCkak} 

-   2Re{e*Ck
H(P-1)kPkXN$Ca} (131) 

which is the condition for the error event e defined in Section 6.1. The unbiasedness 

condition for this receiver can then be written as 

C^{p-1)kPk.N^C^C^R!kQ'kCk[Ik\Ok^k]    \/l<k<N (132) 

or equivalently using the fact that R'kQk = Qk Rk '• 

{P-l)kPL*N = Q'k
H(Q'-H)k*N    Vl<k<N (133) 

where the matrix (Q'~H)kxN comprises the top k rows of the matrix 'Q'~H. It follows 

from (131) and (132) that the probability of the error event e for an unbiased DFSE 

receiver with the front-end filter matched to the transmit filter response, is given by 

= Q (      tcemc*      \.        (134) 
\2^N0^C^R'kQ'k{^)kR'kQ'kCkekl 

An upper bound on the first event error probability is given by (65) with the error 

distance 8(e) in this case defined as 

Ste\ £ fJCkR'kQ'kCkek  (135) 
JgC?Bt,Q'h{*-1)knkQ'kChek 

B    Filters that satisfy unbiasedness 

Let Y be an N x N Toeplitz matrix with elements 

y(hj) = 

1 i=j 

y{i-j)   0<\i-j\<Ly (136) 

0 otherwise 

Let P_1 be the N x N Toeplitz matrix defined in (21) with the diagonal element 

p'(0) set to 1. Assume that the inverses of the submatrices Yk and (P_J)& exist for 

all k < N. 
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Proposition B.l Let max(Ly,lf,lp) + 1 < N < oo. // 

(P-^kPkxN = YkiY-1)^    V k = 1,2,..., N - 1 

then 

(137) 

—i P = Y~\ (138) 

In order to prove the above proposition, we make use of the following lemma [3]: 

Lemma B.l Let T be an m x m invertible Toeplitz matrix subdivided into k x k, 

k x (m-k), (m-k) xk and (m - k) x (m - k) submatrices Tn, T12, T2l and T22 

as shown below.  Then S = T'1 is partitioned similarly into Su, S12, S21 and S22: 

T = 

where, assuming Tu is invertible, 

Tu Tn , s = 
T2i T22 

Su   Si2 

S21   S22 

Su — Tn + Tn Tu{T22 — T2iTn T12)   T2iTlx, 

S12 = —Tu T12(T22 — T2iTü Ti2)~ , 

521 = -(^-T^T-1^)"1^^-1, 

522 = (T22 — T2iT{1 Ti2)~ . 

Let the matrices P_1 and Y be subdivided into k x k, k x (N - k), (N - k) x k 

and (N-k)x(N- k) submatrices Fllt P[2, P'2X and P2'2 and Yn, Y12, Y21 and Y22 

respectively as shown below 

P~l = 
pi     pi 

pi       pi r2\     *22 

Y 
Yu     Yyi 

Y2\   Y22 
(139) 

for k = 1,2,..., N -1. Then, using Lemma B.l, (137) can be broken into two 

equations concerning the first k and the last N-k columns of the k x N matrices on 

either side of (137), given by 

pi rp'-i  1  p/-ipi (pi       pi pi-ipi \-\pi pi-u _ 
rlUrll     +rll    M2^22 _ r21^11   M2J       "21 "ll   J- 

YulYü1 + Y{?Yia(YM - Y21Y-lY12)-1Y21Y1-1
1} (140) 

and 

Pui-Pu'PuiPL - P^Pu'PL)-1] = Y11[-Yü1Y12(Y22 - Y21Yü1Y12)-
1}      (141) 
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respectively for k = 1,2,..., N — 1. Substituting (141) into (140) and simplifying, we 

get 

HiHl1 = YnYü\ (142) 

Let k = 1, then P[x = Yn = 1 and (142) implies that the first column of the matrix 

P_1 is equal to the first column of the matrix Y.   Since P_1 and Y are Toepltiz 

matrices, all elements in the lower triangle of P~1 are equal to the corresponding 

elements of Y, i.e. P2'x = Y21 for all k = 1,2,..., N - 1. Thus, (142) implies that 

^i = *i (143) 

for all k = 1,2,..., N - 1. Since N > max(Ly, //, lp) + 1, (143) involves all non-zero 

elements of the matrices P~l and Y. Thus, 

p = y-1. (144) 

Note that the diagonal elements of the matrices P 1 and Y were set to 1 to factor 

out a scaling factor. In general, we have 

P = cY -l (145) 

where c is a constant scaling factor. 

C    Error distance for ZF-DFSE 

Let the matrices S and S'1 be subdivided into k x k, k x (N - k), (N - k) x k 

and (N — k) x (N — k) submatrices Su, S12, £21 and S^ and S^, S[2, S^ and S22 

respectively as shown below 

(146) 
Su Si 2 , s-* = "tfi °12 

S21 S22 °21 °22 

Then, using Lemma B.l, we get 

Sk(S    )kSk   =   Sk + Si2(S22 — £21 £11 £12)    S21 

=     Sk + S\2S22S2\. 

For k > L, vfe have 

^(S1   )jtS'jfc = S* + 
Ofe-L 0 

0     SH(Si2)LS 

(147) 

(148) 
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Note that for N > L, S'1 is near Toeplitz in the middle of the matrix. Thus, we 

can replace the matrix (S^L in (148) by the principal submatrix S'L of an N x N 

Toeplitz matrix S' with elements s'(i,j) = s'(i - j), given by the inverse z-transform 

of 1/S(z). Thus, for an error sequence e£E' with tail £ as defined in (84), we have 

efS^S-^kSke « eHSke + f' S^_jS'L_jSL-ji. (149) 

The error distance for ZF-DFSE(S) given by (79) can then be approximated as 

%) «   , 1 ■        • (150) 

The above expression is approximate for error events occurring near the edges of the 

data burst where the noise correlation is not the same as in the middle, while it is 

exact for short error events occurring toward the middle of the burst. 

Similarly, it can be shown that the error distance for ZF-DFSE(T) given by (80) 

can be approximated as 

%) * fcs*^  

where $' is an N X iV Toeplitz matrix with elements <f>'(i,j) = <f>'(i—j) obtained from 

the inverse z-transform of l/$(z) (where $(z) is the z-transform of {</>(&)})• 
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Summary 

Wideband CDMA (WCDMA) has been chosen by ETSI as the basic radio-access tech- 

nology for UMTS to aUow high-rate data services [1]. Due to the use of wide bandwidth sig- 

nals, system design must consider frequency-selective multipath fading along with multiple- 

access interference (MAI). A base station has knowledge of the spreading codes of all users 

in its ceU and fading levels and user timings can be estimated effectively and tracked at 

the receiver. In this paper, we consider a trelhs-based multiuser detector that fully exploits 

these parameters to provide an excellent performance/complexity tradeoff. 

Decision feedback sequence estimation (DFSE) [2] is a reduced complexity alternative 

to maximum likelihood sequence estimation, where the complexity is controlled by reduc- 

ing the memory of the trellis in the Viterbi algorithm. For purposes of multiuser detec- 

tion of DS-CDMA signals, it is desirable to use the DFSE algorithm of [3] that operates 

on unwhitened matched filter statistics (UDFSE), as it does not require noise-whitening. 

Hafeez and Stark showed in [4] that the UDFSE algorithm suffers from untreated anti- 

causal interference components (bias). A modified unwhitened decision feedback sequence 

estimation (MUDFSE) algorithm was proposed which compensates for the bias using ten- 

tative decisions. A simplified version of this algorithm uses an approximate bias term 

which is independent of the state in the trellis and does not add significant complexity. 

In this paper, we consider a receiver with a Rake front-end for each user foUowed by the 

simplified MUDFSE algorithm that operates on the statistics of all users (assumed to be 

asynchronous). The Rake optimally combines the multipath fading components for each 

user while the MUDFSE algorithm resolves the multiuser interference components. The 

MUDFSE algorithm is provided with partial channel correlations which are computed on 

line by means of Rake correlators. 

We consider an 8 user, BPSK modulated asynchronous DS-CDMA system with length 
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Figure 1: Sampled delay profiles for ALD and PS. 

31 Gold spreading codes, chip rate 4.096 Mcps, data rate 132 kbps, carrier frequency 910 

MHz and vehicle speed of 67.5 mph. We consider two different channel environments for 

each user based on the measurements of Cox et. al for a suburban [5] and an urban area 

[6]. The delay profiles are shown in Fig. 1. Relative user delays are fixed for the simulation 

and are assumed known at the receiver. Fading levels are also assumed to be known at the 

receiver. 

Fig. 2 shows the average user bit-error rate (BER) for various receivers on American 

Legion Drive. The parameters in the figure specify the memory order of the trellis search 

algorithm and the decision lag. The multiuser channel has memory 7, not considering 

inter-symbol interference and MAI components caused by the multipaths of non-overlapping 

symbols. Fig. 3 shows the bit-error rate (BER) performance on Pine Street. It can be noted 

that with memory order 2, the MUDFSE algorithm provides close to MLSE performance 

in the case of ALD and obtains a huge gain over UDFSE (with the same memory order) 

for moderate signal-to-noise ratios (SNR). The gain over UDFSE is less in the case of PS 

which is more dispersive than ALD. 

We will compare MUDFSE against other non-linear multiuser detection methods like 

parallel interference cancellation and successive interference cancellation. A soft input ver- 

sion of MUDFSE which uses soft tentative decisions to cancel bias will also be considered. 

Moreover, we will provide numerical results with adaptive channel estimation. 
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Abstract - Co-channel interference is a major im- 
pairment for IS-136 handsets. Joint estimation of co- 
channel signals can be used to minimize this effect, but 
traditional approaches require transmissions from dif- 
ferent base-stations to be synchronized. In this paper, 
we consider a semi-blind approach for cancelling asyn- 
chronous interference using generalized per-survivor 
processing for channel acquisition and tracking. Sig- 
nal delays and medium responses are jointly estimated 
for symbol-asynchronous co-channel signals assuming 
knowledge of the signal structure. Simulation results 
are presented that show C/I gains of 15 dB in the 
presence of one interferer. 

I   INTRODUCTION 

Digital AMPS (D-AMPS) based on the IS-136 stan- 
dard is a popular technology for wireless cellular and 
PCS services in the Americas and elsewhere. System 
design must consider multipath fading and time dis- 
persion, as well as co-channel interference (CCI). At 
the base station, these impairments can be mitigated 
using diversity or phased array antennas. However, at 
the handset, it is preferable to use only one antenna 
and receive chain due to size, weight and cost con- 
straints. Joint adaptive demodulation of co-channel 
signals provides an attractive alternative for obtaining 
vital gains near cell boundaries where typically one or 
two co-channel interferers are dominant. It enables 
tighter frequency reuse in the network, improves cov- 
erage or allows a combination of both. This paper fo- 
cuses on a semi-blind approach for joint demodulation 
suitable for slot and symbol asynchronous interference. 

Coherent joint demodulation of co-channel user sig- 
nals has previously been considered by several au- 
thors. Analytical bounds on performance have been 
derived for joint maximum likelihood (ML) detec- 
tion of symbol-synchronous users in fading channels 
[1]. Joint maximum likelihood sequence estimation 
(MLSE) of co-channel signals in known, time-invariant 
ISI channels is investigated in [2] and [3]. Since fading 
channels are unknown a priori, it is critical to estimate 
the channels accurately for successful signal separa- 
tion. Transmission of synchronized training sequences 
for multiple co-channel signals greatly facilitates the 

channel acquisition process, and is used in [4]. In cur- 
rent D-AMPS systems, base-stations are not synchro- 
nized, precluding joint training. However, it is possible 
to exploit the training sequences of individual signals, 
and is considered in [5] for stationary channels. For 
the D-AMPS burst interval length, the fading channel 
estimates must be adapted over the slot, even at fairly 
low vehicle speeds. Adaptive estimation of co-channel 
signals aided by joint training is considered in [6], and 
blind adaptive joint MLSE and MAP algorithms with- 
out training are investigated in [7]. 

In this paper, we investigate joint adaptive estima- 
tion of asynchronous co-channel signals. A novel, semi- 
blind approach to signal acquisition is given, in which 
initial channel estimates are obtained using only the 
training sequence of the desired signal. This approach 
addresses the fact that user signals are both slot and 
symbol asynchronous. To handle additional ISI from 
the interferer misalignment, the MLSE state space is 
increased, and pulse-shape side information is used 
to aid channel estimation. Acquisition and demod- 
ulation are based on a generalization of per-survivor 
processing (PSP) [8], which has been used for single- 
user acquisition [9]. Generalized PSP is the concept 
of per-path parallel feedback extended to an arbitrary 
tree search algorithm. Specifically, we apply multi- 
ple survivor PSP [10] for semi-blind joint acquisition 
of co-channel signals over the training sequence of the 
desired signal and for jointly demodulating all signals. 

The overall response for each co-channel signal con- 
sists of a transmit pulse-shaping filter, a medium re- 
sponse and a receive filter matched to the transmit 
pulse. The transmit and receive filter responses are 
known a priori and are used to constrain the overall 
channel impulse responses in the case of asynchronous 
co-channel signals. However, this method requires the 
knowledge of signal delays. During acquisition, we 
jointly estimate the delays and medium responses of 
co-channel signals using pulse-shape side information, 
with the joint MLSE metric formulated in terms of the 
pulse-shape autocorrelation and the medium response. 

The paper is organized as follows. Section II de- 
scribes the system model and the joint detection prob- 
lem is formulated in section III. Section IV describes 



adaptive channel estimation and semi-blind acquisi- 
tion. Performance results are presented and discussed 
in section V and section VI concludes the paper. 

II   SYSTEM MODEL 

Figure 1 shows the model of a co-channel communi- 
cation system with K users in baseband equivalent 
form. The A;th transmitter transmits an independent 
sequence of N complex symbols {a-k,n}n=i (taken from 
an M-ary alphabet) after passing it through a linear 
time-invariant pulse-shaping transmit filter with im- 
pulse response f(t - r^)1, where Tk is the kth. signal's 
delay. Transmit signal k passes through a time-varying 
transmission medium with delay response gk(T;t), 
where r and t are the delay and the time indices, re- 
spectively. The co-channel signals are summed and 
added with w(t), which is assumed to be a zero-mean 
AWGN process with a one-sided noise power spectral 
density NQ. 

l«»1,> 
f(t-nT-T,) 

x,(t) 
9i (T,t) r "> / -N y(t) 

J L J 

{a2.„} 
f(t-nT-T2) 

x2(t) 
Q2^A) 

wra 

{aK,n} 
fft-nT-TK) XKW 

gK^.t) 

Figure 1: A co-channel communication system model. 

Ill   JOINT DETECTION 

Joint detection of multiuser sequences, assuming a pri- 
ori equiprobable transmitted sequences can be per- 
formed using a maximum likelihood sequence detector 
(MLSD). For on = {ak,i : k = 1,... ,K;i = 1,... ,n} , the 
optimum joint MLSD receiver finds the sequence aN 

that maximizes the likelihood of receiving y(t) given 
that the sequence aN was transmitted. This detec- 
tor is derived in the appendix for signals with excess 
bandwidth under the assumption of a time-varying, 
frequency selective channel response. However, this 
approach requires sampling the filtered receive signal 
non-uniformly at the delays of the fractionally-spaced 
medium response. Alternatively, in this section, we 
derive a sub-optimum joint MLSD receiver for detect- 
ing aN based on symbol-spaced sampling of the receive 
signal, leading to a simplified receiver. 

Let r(t) be the received signal filtered by a time- 
invariant filter matched to the transmit pulse-shaping 
filter i.e. r(t) = /*(—*) * y{t). Let the first co-channel 
signal be the desired signal with signal delay T\ = 0, 

then the medium response for each user can be mod- 
eled as a tapped delay line with symbol-spaced taps 

Sfc(T,t) = X>M(*)<S0--iT), (1) 

where T is the symbol period. The filtered signal r{t) 
sampled at times nT is denoted as rn — r(nT), with 

K    Lk 

k=l 1=0 
/ J<lk,n--l-jPk,j (2) 

Lk is the memory length of the kth co-channel medium 
in symbol periods, and Ckj.,n — <'kti{nT) are the taps 
of the medium response filter which are approximated 
as constant over the duration of the pulse-shaping fil- 
ter response. The sampled autocorrelation function 
of the pulse-shaping filter, pkj, is given by pkj — 
/*(—<) * f(t — Tk)\t T and is assumed to be Nyquist. 
Interval J is chosen such that the sampled autocor- 
relation function for the fcth signal pk,j has negligible 
energy for j £ J. 

Equation (2) can be written in matrix form as 

rn = Qn$®n + VJn, (3) 

where an and cn are stacked vectors of the transmitted 
symbols and medium response samples, respectively. 
The matrix * is a block diagonal matrix with the kth 
block *fe containing the sampled pulse-shape autocor- 
relation values pk,j corresponding to user k. As an ex- 
ample, consider two flat-faded co-channel signals using 
Nyquist pulse-shaping with the received signal sam- 
pled ideally for the desired signal. The sampled pulse 
autocorrelation function for the second signal modeled 
as three taps (j € {—1,0,1}) to account for its de- 

lay. In this case, an = (ai,n,a2,n+i,a2,n,a2,n-i)T, 
Qn = (ci,o>n,C2,o,n)H, and * is given by 

10 0        0 
0     p2,-l      P2fl     P2,l 

(4) 

A joint MLSD based on the model of (3) determines 
the most likely transmitted sequence aN that mini- 
mizes the metric 

J(fijv) = Orn~e'?*^l (5) 
n=l 

1/(t) is normalized to have unit energy 

It follows ([11], [12], [2]) that the. ML sequence can be 
determined recursively by using the Viterbi algorithm 
with branch metrics based on (5). 

IV   ADAPTIVE CHANNEL ESTIMATION 

Channel estimation plays a ke}' role in successful can- 
cellation of co-channel interference through coherent 



demodulation. Independent fading of co-channel sig- 
nals makes it possible to distinguish between signal 
states at the output with high probability only if the 
fading channels are known or can be estimated ac- 
curately at the receiver. For the D-AMPS system, 
although the desired channel can be estimated indi- 
vidually over its sync word, the estimate is not accu- 
rate at low carrier-to-interference (C/I) ratios. Joint 
data/channel estimation is thus employed for semi- 
blind channel acquisition over the training sequence 
of the desired signal. 

Per-survivor processing allows effective channel es- 
timation aided by zero-delay survivor sequences. As- 
suming knowledge of signal delays, we estimate the 
medium responses using branch metrics computed as 

e(<7n|crn_i) =rn- c^(o-„_i)*dn, (6) 

where cn(ara_i) are medium response estimates ob- 
tained using the survivor sequence associated with the 
state crn_i. Using Least Mean Square (LMS) channel 
identification, the channel update is calculated as 

c„+i(o-n) = cj^n-i) + /?*ane*(o-„|an_i),       (7) 

where ß is selected as a compromise between tracking 
capability and excess mean square error. 

Blind single channel acquisition can be enhanced 
over conventional PSP by resorting to an extended 
data sequence search. The primary cause of mis- 
acquisitions in the single channel case is the existence 
of indistinguishable, i.e. equivalent sequences, includ- 
ing sequences such as the inverted and shifted versions 
of the transmitted data sequence. In order to im- 
prove acquisition, the number of sequences eliminated 
is minimized during the early stages in a generalized 
PSP algorithm [9]. 

Blind acquisition of multiple co-channels is more dif- 
ficult, since mis-acquisitions may be caused by trans- 
mitted co-channel sequences that happen to be highly 
correlated over a large enough window of overlapping 
symbol positions. As an example, consider the case of 
two co-channel signals: both flat-faded and stationary. 
Assume that the transmitted sequences are symbol- 
aligned. A PSP-based joint MLSE algorithm requires 
only one state. Let a^n = a2<n for n — 1,...,NS, 
then equivalent accumulated metrics J(aN ) along the 
correct path are given by 

N, 2 Ns 2 

X! iirn - X£fc'°'nait'"ii2 = X iirn ~ ai'n X 6fc.°."ii2- 
n=l fc=l n=l fc=l 

(8) 
With the co-channels initialized to zero, the single 
channel estimator along the correct path (if not elim- 
inated) is equally likely to converge (if it does) to any 
of the co-channel states belonging to the infinite set 

{(cifi,Na,C2,0,N3) ■ Cl,0,ATs +C2fl,Ns = Clfi,Na + C2,0,NS}- 
This problem can be alleviated by using a generalized 
PSP algorithm during acquisition. We consider multi- 
ple survivor PSP, since it allows survivors with iden- 
tical recent path histories (but different channel his- 
tories) to continue if they possess good accumulated 
metrics. This reduces the chance of mis-acquisition of 
the correct channel. 

For asynchronous co-channel interference, two ap- 
proaches for channel estimation are considered. In the 
first approach, independent taps are estimated for the 
composite response of the interferer. The composite 
response is the medium response convolved with the 
transmit and receive filter pulse shape autocorrelation 
function. In the second approach, the channel esti- 
mator estimates only the medium response for each 
co-channel signal using (7). The sequence estimator 
uses the knowledge of the sampled pulse autocorrela- 
tion matrix 3> to compute branch metrics that depend 
on the overall response using (6). The latter approach 
requires estimation of ray delays, which are estimated 
by employing hypothesis testing of the delay value, dur- 
ing acquisition. We restrict this approach to the case 
where a single interferer path (flat fading) is assumed, 
and choose the hypothesized delay for this path with 
the best metric from the Viterbi algorithm. 

The path metric and the medium response estimates 
must be initialized prior to acquisition. We assume 
that the length of multi-path spread in symbol inter- 
vals (Lk) is known for all co-channel signals. The de- 
sired medium response is initialized to its least squares 
estimate which is found using the known sync word. 
The interferer channel is initialized based on the resid- 
ual signal after estimation and removal of the desired 
signal. The interferer channel's amplitude is estimated 
by subtracting the reconstructed desired signal from 
the received signal and averaging over the training se- 
quence. The phase of the estimate is obtained from 
the phase of one of the samples of the residual signal. 

If the transmission medium is non-stationary, chan- 
nel estimates obtained over the training sequence are 
not valid for the entire slot. D-AMPS at 1990 MHz 
has a slot-normalized fading rate of 1.23 at a speed 
of 100 km/h. Thus, fully adaptive channel tracking 
is required at high speeds, but it also helps overcome 
poor initial channel estimates at low speeds. Here, the 
least mean square (LMS) algorithm is considered for 
tracking as it has been shown to have similar track- 
ing capabilities as the more complex recursive least 
squares (RLS) algorithm [13]. In the case that com- 
posite channel estimates are computed, LMS is used 
in the conventional manner to update the desired sig- 
nal and interferer taps jointly. When knowledge of the 
pulse shape is used, the channel estimates are adap- 



tively updated via the LMS algorithm using the hy- 
pothesized symbols convolved with the pulse shape 
[14], and is called Pulse-shape Assisted Channel Es- 
timation (PACE). 

V   PERFORMANCE RESULTS 

Performance is evaluated via simulation for the down- 
link of the D-AMPS system. A 40 ms frame is divided 
into six slots, giving each user a 30 kHz channel for two 
slots per frame. The user transmits at 24.3 k-Baud 
using 7T/4-DQPSK modulation with 1990 MHz carrier 
and square-root raised cosine pulse-shaping (35% roll- 
off). The slot comprises 162 differential symbols out of 
which the first fourteen are used for training. The re- 
ceiver mixes down the signal coherently, filters it with 
a matched square-root raised cosine filter and samples 
at eight times the symbol rate. Synchronization (sync) 
is performed for the desired user, decimating the sig- 
nal to the symbol rate based upon the symbol timing 
estimate. The received signal comprises a desired sig- 
nal and one interfering signal. Results are presented 
separately for acquisition and demodulation. 

Figure 2 shows results for acquisition of channel es- 
timates using the known training sequence of the de- 
sired signal. For this case, two taps are used for the 
desired signal and one for the interferer. Each signal, 
however, is flat faded with 0 Hz fading (fixed over the 
slot, but independent from slot to slot). The interferer 
is symbol synchronous, but slot asynchronous, to the 
desired signal and ideal sampling based on the desired 
signal is assumed at the receiver. Each simulation was 
run for 500 slots with ß — 0.28. The plots show the 
number of slots with a root mean square error of Erma 

versus Erms, where RMS error is the error between 
the first ray of the desired channel and its estimate 
after the training period. The top and bottom plots 
show results when PSP-MLSE and 32 survivor paths 
are used, respectively, when C/I is fixed at 0 dB and 
Ea/No equals 23 dB. For the case that PSP-MLSE is 
used, an Erms value greater than 0.1 is observed in 
roughly 20% of the slots, leading to misacquisition of 
the channel. This is because sometimes the random 
data of the interferer happens to be highly correlated 
with the desired signal's sync word over several sym- 
bol periods. Using 32 survivor paths, only a handful of 
slots experience Erms > 0.1, both reducing the aver- 
age and maximum Erms values, as shown in the figure. 

Next, we compare the bit error-rate (BER) perfor- 
mance of various PACE approaches when the desired 
and the interfering signals are symbol asynchronous. 
Both signals again have 0 Hz fading which is inde- 
pendent from slot to slot. The desired signal's timing 
is either known or estimated by correlating the data 

PSP 

Ave E   =0.095506 

0       0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8 

32 Paths 

Figure 2: Histogram of the slots with a given rms error 
after semi-blind acquisition. 

with the known training sequence of the desired signal. 
The overall response for the desired co-channel signal 
is modeled as one tap while, for the interferer, it is 
modeled as three taps. When using PACE mode, only 
one medium tap is estimated. Acquisition is achieved 
with 64 survivor paths, while tracking mode uses one 
survivor path (PSP-MLSE). Signal misalignment is es- 
timated during acquisition mode for each slot by hy- 
pothesizing delays 0 to half symbol in increments of 
l/8th symbol, choosing the delay that yields the best 
accumulated metric over the training field of the de- 
sired signal. LMS step sizes are set to 0.2 and 0.1 for 
training and tracking modes, respectively. 

Figure 3 shows the performance in an interference 
limited environment (Es/N0 = 33 dB) when the two 
signals are quarter symbol misaligned. The bottom 
curve shows performance using joint demodulation 
with PACE mode under known medium conditions. 
The next curve uses PACE mode with estimated sync 
and medium response, but known interferer misalign- 
ment. The following curve is the same as the last, 
but estimates the interferer misalignment. The sec- 
ond curve from the top uses joint demodulation, but 
estimates the composite channel, and the top curve 
shows performance without joint demodulation. Note 
that the joint demodulation performance with known 
sync and channel is not very good at low C/I. This 
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Figure 3: Performance with T/4 symbol misalignment. 

is mainly because the three taps for the interferer do 
not account for all the ringing arising from the sam- 
pling offset. With known misalignment, the receiver 
that uses this information and estimates the medium 
responses only, performs better than the receiver that 
estimates the overall responses. Even when the delay 
is estimated, the first receiver outperforms the second 
and provides about 15 dB gain over the conventional 
single user receiver at 1% BER. 

Figure 4 shows the bit error-rate performance when 
Es/No = 33 dB and the desired signal and interferer 
are flat faded and symbol aligned, but the Doppler fre- 
quency is 46 Hz (25 km/h at 1990 MHz). One tap is 
assumed for each signal's channel, and LMS step sizes 
are set at 0.7 and 0.6 for training and tracking modes, 
respectively. At 1% bit error rate, a 5 dB C/I gain 
is achieved compared to without interference cancel- 
lation. The cause of the degradation in performance 
when the channels are time varying is partly due to 
the reasons discussed previously. When the data se- 
quences of the interfering signals happen to be highly 
correlated over several consecutive symbols, the per- 
survivor channel trackers can be thrown off the correct 
channel state even on the correct survivor path. Mul- 
tiple survivor tracking can help reduce the probability 
of this event. Figure 4 shows that a further 4 dB C/I 
gain is achieved at an error rate of 1% when 4 path 
channel tracking is used over the data field. We note, 
however, the large step sizes used in the LMS approach 
indicate that it has difficulty estimating the channel 
and alternate adaptive trackers should be considered. 

VI    CONCLUSIONS 

In this paper, we propose joint maximum likeli- 
hood sequence estimation together with per-survivor- 
processing and multiple survivor search to jointly de- 

C/l (dB) 

Figure 4: Tracker performance at 25 km/h. 

modulate a single dominant co-channel interferer to 
improve the performance for the desired signal. LMS- 
based channel estimation is used in a D-AMPS termi- 
nal with single antenna and symbol-spaced sampling. 
In the case of symbol-asynchronous signals, we esti- 
mate signal delays and exploit the knowledge of pulse 
shaping filters for the symbol sampled receive signal. 
Simulation results indicate that gains of 5-15 dB C/I 
can be achieved over the conventional single-user re- 
ceiver. Further work includes improving performance 
at high speeds using more sophisticated tracking. 
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APPENDIX 
Here we derive a receiver that finds the sequence a# 
which maximizes the likelihood of the received signal 
y(t), given that aN was transmitted. This is equiva- 
lent to maximizing the log-likelihood function derived 
from the a posteriori distribution of the received sig- 
nal, assuming equally probable transmitted symbols. 
Ignoring constant scaling factors and additive terms 
[15], the log-likelihood function reduces to 

AH 
Jtei 

K   N 

v(')-££a*.»'*(*-«T;e) 
fc=ln=l 

dt, 

m 
where / is the finite time interval over which y(t) is 
collected [15] and H is the hypothesis corresponding 

to the sequence äN. The composite channel for user k 
is denoted as hk(r,t), and is equal to 

Mr, t) = E CjM(t)/(r - rk - IT/Q), (10) 

where Q is an integer chosen s.t. the signal bandwidth 
is less than Q/2T. Following the development in [12], 
the log-likelihood function A// can be expanded as 

AH=A + BIi+C[r, 

where 
A = ~f   \y{tfdt, 

Jtei 

BH=f   2Ref^E6Mh*(t-nT;tM')) 
J*1 U=ln=l J 

and 

(11) 

(12) 

dt, 

(13) 

K    N 

= -/ EE <«> 
K    N 

E E &ln^Mc(t - nT;t)ht(t - mT;l)dt. 
/«i n»=i 

Term A can be omitted and 

B„ = E2Re{EaM^,n}. (15) 
n=l U-l ) 

where 
**,n = E<K»r+ir/Q+T,0r(n7W/Q+Tfe), (16) 

r(t) = f*(—t)*y(t), and the medium response ct,j(t) is 
approximated as constant for the duration of the pulse 
shaping filter f{t). 

Term Ca can be written as 
K    N    K    N 

C» = ~ E E E E «,«äWM;«,-.        (17) 
fc-l n-l 1=1 m=l 

where 
*t,lin,m = (I8) 

/ fcI(t-(ft-m)r;t + TOT)/i!(t;t + mr)<ft. 
Jt+mT€l 

The RHS in (17) can be expanded using the fact that 
sk,l;n,m = *f fc;m,n- Combining the terms BH and CH, 
the log-likelihood metric can be expressed as 

n=l *=1 

(2«fc,n - 6*,nS*,*;n,fi - 2E E h.m*kMn,m)} ■ 

The sequence that maximizes this metric can be de- 
termined by using the Viterbi algorithm. 
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ABSTRACT 

Trellis and Tree Search Algorithms for Equalization and Multiuser Detection 

by 

Abdulrauf Hafeez 

Chair: Wayne E. Stark 

This thesis deals with the detection of digital signals in the presence of inter-symbol in- 

terference (ISI) and/or multiple-access interference. We develop a new fractional maximum 

likelihood sequence estimation (MLSE) receiver which is suitable for wireless communica- 

tion systems with excess signal bandwidth and fast time-varying channels. We investigate 

the effect of the receive filter and the branch metric on decision feedback sequence esti- 

mation (DFSE) and M-algorithm receivers, which are reduced-complexity alternatives to 

MLSE. The analysis leads to the classification of these receivers on the basis of the presence 

of untreated interference components, referred to as bias, which dominate the error-rate 

performance of the receiver. Bias arises in a DFSE or M-algorithm receiver due to a mis- 

match between the receive filter and the branch metric. We show that an unbiased receiver 

comprises a front-end filter matched to the overall channel or the transmit filter response 

followed by the appropriate noise-whitening or zero-forcing filter and a reduced trellis or 

tree search algorithm. Receivers with just a matched filter followed by a reduced trellis or 

tree search algorithm belong to the class of biased receivers. 

We compare various trellis-based receivers on the basis of the distance of a given er- 

ror sequence, which characterizes the probability of the associated error event. We show 

that whitening filter DFSE receivers maximize the error distance among unbiased DFSE re- 

ceivers and truncated-memory MLSE receivers with pre-filtering. For matched filter DFSE 



receivers, we describe bias compensation methods employing hard as well as soft tenta- 

tive decisions, which significantly enhance performance in most cases without adding much 

complexity. Union bounds on the error probability of the various receivers are derived and 

evaluated using a modified generating function approach. 

We derive an optimum forward-recursive soft-output algorithm which operates on the 

standard matched filter statistics and has complexity that grows exponentially with the 

channel memory only. We also derive a reduced-state soft-output algorithm which provides 

good symbol reliability estimates with reduced complexity. The performance of the various 

algorithms is compared for equalization of ISI and multiuser detection for direct-sequence 

code-division multiple-access systems via simulation and analytical examples. 
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CHAPTER 1 

Introduction 

Bandwidth efficient data transmission over wireline and wireless channels is made pos- 

sible by the use of equalization techniques to compensate for the inter-symbol interference 

(ISI) introduced by the channel. In wireline channels like telephone lines, time dispersion 

results from non-ideal amplitude and phase characteristics of the medium and causes ad- 

jacent transmitted pulses to interfere with each other. In radio and undersea channels, 

the signal traverses several paths with differing amplitude and delay responses to reach the 

receiver. This phenomenon, known as multipath propagation, causes ISI. The problem of 

ISI also occurs in magnetic and optical recording channels due to non-ideal characteristics 

of the inductive read head. The medium is not always responsible for causing ISI. Band- 

width efficient design of signals, known as partial-response signaling, generally introduces 

controlled ISI to enable high-rate transmission. 

Many wireline and wireless communication systems suffer from the impairment of multiple- 

access interference (MAI) in varying degrees. In code-division multiple-access (CDMA) 

systems, users share a common physical channel to transmit/receive non-orthogonal signals 

which interfere with each other. In hybrid time-division multiple-access/frequency-division 

multiple-access (TDMA/FDMA) systems, users reusing the frequency of the desired user in 

nearby cells cause co-channel interference. In twisted-pair local subscriber lines, crosstalk 

between users occurs due to the coupling of signals in adjacent wires. The problem of MAI 

can be alleviated by means of a multiuser detection technique. Sucb techniques have gained 

popularity especially in the case of direct-sequence CDMA (DS-CDMA) systems and are 

being considered for the next generation wireless systems as a key to improve capacity. Co- 

channel interference cancellation techniques are also being considered for the TDMA/FDMA 



system based on the digital advanced mobile phone system (D-AMPS) standard. 

The mitigation of ISI has been a prolific area of research for several decades [31]. Sev- 

eral techniques have been developed for equalization of ISI for pulse-amplitude modulated 

(PAM) systems which have been adopted for related problems, including MAI suppression. 

Maximum likelihood sequence estimation (MLSE) [6.13,22,40,43] is an optimal detection 

technique for channels with memory and additive noise. It minimizes the probability of 

sequence error for a-priori equiprobable sequences. The technique was first proposed by 

Forney [13] for optimum equalization of linear finite ISI channels with additive white Gaus- 

sian noise (AWGN). Later, other authors discovered applications of the MLSE algorithm to 

related problems. Verdü [43] derived an optimum multiuser detector for DS-CDMA systems 

by noting that the MAI in a DS-CDMA system can be viewed as cyclo-stationary ISI in a 

single-user system. The detector finds the joint maximum likelihood sequence of symbols 

for all users. 

Maximum a-posteriori symbbl-by-symbol detection (MAPSSD) is an optimal detection 

technique for channels with memory and additive noise which minimizes the probability of 

symbol error [1,3,23,28,42].  Conventional implementation of a MAPSSD receiver, com- 

pared to an MLSE receiver, has the added benefit of obtaining symbol a-posteriori proba- 

bilities (APP) which are useful for concatenated systems. Central to an MLSE (MAPSSD) 

receiver is a non-linear processor called the Viterbi algorithm (optimum soft-output al- 

gorithm).   For a channel with delay response with finite length L (measured in symbol 

periods) and input alphabet size A, the Viterbi algorithm employs a trellis with AL states 

or nodes.   The size of the trellis and the computational complexity of the algorithm be- 

come prohibitive if the channel has a long delay response.   The algorithm can not be 

implemented for channels with infinite delay response.  The same is true for an optimum 

soft-output algorithm (OSA). Thus, several low-complexity linear and non-linear techniques 

have been considered for equalization [34] as well as for multiuser detection [44]. Some of the 

most powerful complexity reduction techniques are non-linear techniques which are derived 

from an MLSE or MAPSSD receiver. These include decision feedback sequence estimation 

(DFSE) [7,8,10,11,17,19,20,39,50], truncated memory MLSE (TM-MLSE) [12,26,35,49], 

the M-algorithm [2,48,51] and Bayesian conditional decision feedback estimation (BCDFE) 

[18,25].   This thesis deals with analysis and derivation of MLSE and MAPSSD receivers 

and some of their most prominent reduced-complexity derivatives. New techniques are de- 



veloped for applications in equalization and multiuser detection. Existing techniques are 

compared to each other and to the new techniques via analysis and simulation. Most work 

in this thesis is focussed on MLSE and related receiver structures. For this purpose, Chap- 

ter 2 sets up the system models for a single-user ISI system and a multiuser DS-CDMA 

system and describes optimum equalization and multiuser detection methods based on the 

MLSE technique. The notation developed there is followed throughout the thesis. 

In wireless communication systems, the channel is generally considered as comprising a 

time-invariant transmit pulse-shaping filter and a time-varying and dispersive transmission 

medium. Forney's MLSE receiver comprises a front-end filter matched to the overall channel 

impulse response (the standard matched filter), Mowed by a symbol-rate sampler and a 

discrete-time noise-whitening filter to whiten the filtered noise affecting the statistics. The 

Viterbi algorithm operates on the whitened statistics to search for the most likely sequence 

transmitted using the Euclidean distance metric.  Ungerboeck [40] derived an alternative 

MLSE formulation where the Viterbi algorithm operates directly on the statistics obtained 

after standard matched filtering, using a modified metric. In a time-varying environment, 

both receivers require an adaptive front-end filter which is not desirable for implementation 

purposes. Moreover, if the signal bandwidth is greater than the data rate, sampling at the 

symbol rate results in high sensitivity to the sampler timing phase [34]. Many narrowband 

communication systems utilize excess signal bandwidth. To handle these problems, Hamied 

et al. [22] proposed a receiver with a non-adaptive front-end filter matched to the transmit 

filter response (transmit matched filter), followed by a fractional-rate sampler and a fixed 

noise-whitening filter. However, due to the presence of nulls in the Nyquist band of practical 

pulse-shaping filters like the square-root raised cosine filter, the noise-whitening filter has a 

long slowly-damped delay response and any practical length truncation results in significant 

distortion. In Chapter 3, we derive a new fractional MLSE receiver that does not need a 

noise-whitening filter. The receiver is insensitive to the sampler timing phase. It exploits the 

knowledge of the pulse-shaping filter at the receiver and requires only one-step prediction for 

the medium response coefficients. These features make the receiver attractive for systems 

with excess signal bandwidth and fast time-varying media. 

DFSE and TM-MLSE are trellis-based techniques where the complexity is controlled 

by reducing the memory of the trellis in the Viterbi algorithm. On the other hand, the 

M-algorithm is a tree-based technique where the complexity is reduced by pruning the tree 



(representing sequence hypotheses) to maintain a given number of branches at each step. 

In TM-MLSE [12.35]. the tail of the delay response of the channel is canceled by means of 

linear pre-filtering. In DFSE [7,8] and the M-algorithin [2], the tail of the delay response 

is canceled by feeding back past decisions taken from survivor paths in the trellis or tree. 

This manner of conditional decision feedback has been shown to alleviate the problem of 

error propagation that limits the conventional decision feedback equalizers. DFSE and 

M-algorithm receivers have been proposed to operate with whitened as well as standard 

matched filter statistics. It has been noted that the receive filter has a profound influence 

on the performance of these receivers [37,48,50]. However, this effect has not been quantified 

and understood. 

In Chapter 4, we examine the effect of the receive filter and the branch metric on a 

generalized receiver comprising a front-end filter followed by a general transversal processing 

filter and a reduced trellis or tree search algorithm with conditional decision feedback. We 

consider two different formulations for the branch metric — in one case the front-end filter 

is the standard matched filter while in the other case, it is the transmit matched filter. 

The latter formulation is desirable for fractional equalization in the presence of excess 

signal bandwidth.  A first error event analysis of the generalized receiver indicates that a 

proper combination of the processing filter and the branch metric is necessary to avoid bias 

(untreated interference components).   The presence of bias severely limits the error-rate 

performance of a DFSE or M-algorithm receiver for most channels of interest. The various 

receivers are thus classified as biased and unbiased. Bias occurs in a DFSE or M-algorithm 

receiver due to a mismatch between the processing filter and the branch metric. We show 

that the processing filter must either be the appropriate noise-whitening filter (WF) or 

the zero-forcing filter (ZF) in order to achieve unbiasedness. Thus, the well-known DFSE 

and M-algorithm receivers with the whitening filter (WF-DFSE and WF-MA, respectively) 

belong to the class of unbiased receivers, while the receivers with just the matched filter 

(MF-DFSE and MF-MA) belong to the class of biased receivers. 

The error-rate performance of the various DFSE and TM-MLSE receivers can be char- 

acterized by a parameter called the error distance. The error distance, in our case, does not 

merely mean the distance between two hypothesized signal sequences as in Forney [13], but 

it also includes the effect of noise enhancement. The distance of a given error sequence for a 

DFSE receiver depends on the type of filtering and the branch metric. The distance is max- 



imized by the MF-DFSE receiver with the standard matched filter, while it is smaller for 

WF-DFSE and ZF-DFSE. This is due to the fact that the standard matched filter maximizes 

the output signal-to-noise ratio (SNR) by collecting all the energy of the pulse transmitted 

at a given time in the corresponding output sample. The noise-whitening filter spreads out 

the signal energy into several output samples in the process of whitening noise. The linear 

zero-forcing filter decorrelates all interfering signal components but enhances (and corre- 

lates) noise in the process. The reduced trellis-search algorithms which follow these filters 

recover part of the SNR that is spread out but are unable to recover all of it. Unfortunately, 

the drawback of MF-DFSE is that the reduced trellis search algorithm, in this case, is un- 

able to resolve some anti-causal interfering signal components which generally dominate 

the error performance. Since the noise-whitening filter removes only the anti-causal signal 

components, which is necessary for unbiasedness, it maximizes the error distance among 

unbiased DFSE receivers. ZF-DFSE and TM-MLSE perform additional signal decorrelation 

and have lower error distance and thus inferior error-rate performance than WF-DFSE. The 

analysis ignores the effect of error propagation on DFSE receivers which, however, is small 

for most channels of interest. We obtain upper bounds on the symbol error probability of 

the various trellis based receivers assuming no error propagation and describe a generating 

function method to evaluate the union bounds. 

Despite the unbiasedness and excellent error distance properties of WF-DFSE, its ap- 

plicability is limited by the requirement of the noise-whitening filter. In applications where 

the noise at the output of the front-end filter is white, the algorithm can be employed 

without noise-whitening. However, the error performance in this case is highly sensitive to 

channel phase. While the best performance is obtained if the channel has minimum-phase, 

the performance may be rather poor if the channel has maximum or mixed phase. An 

all-pass filter is needed to get the minimum-phase channel. Computation of the additional 

processing filter requires channel inversion and/or factorization operations. This may not 

be desirable for applications involving time-varying channels and channels with deep spec- 

tral nulls. MF-DFSE is suitable for such applications. However, its performance is severely 

limited by the presence of bias as described earlier. 

An intuitive solution to the problem of anti-causal interference components in MF- 

DFSE is to cancel them by means of tentative decision feedback. This results in bias- 

compensated MF-DFSE (BC-MF-DFSE) receivers which are described and analyzed in 



Chapter 5. With reliable tentative decisions, the bias can be compensated effectively. As 

a result, the performance is no longer dominated by untreated interference components 

but rather by the excellent error distance. Tentative decisions can be obtained bv using a 

decision device which delivers hard or soft decisions based on just the current input sample 

or by using a multistage configuration. Linear and non-linear minimum mean square error 

estimates of the symbols are considered as soft decisions. We obtain approximate upper 

bounds on the error probability for the various BC-MF-DFSE receiver configurations and 

describe a generating function technique to evaluate the bounds. Using several simulation 

and analytical examples, we find that a MF-DFSE receiver with soft bias compensation 

(SBC-MF-DFSE) provides a significant gain over MF-DFSE for most channels of interest 

without much added complexity. The receiver is particularly suitable for multiuser detection 

in DS-CDMA systems and performs quite well in near-far conditions. 

Chapter 6 deals with soft-output algorithms. The optimum soft-output algorithm (OSA) 

of Li et al. [28] has complexity which grows exponentially with the channel memory and 

linearly with the decision lag. The algorithm operates on discrete-time statistics contain- 

ing white noise. The algorithm of Hayes et al. [23] operates on the standard matched 

filter statistics but has complexity which is exponential in the decision lag. The optimum 

soft-output multiuser estimation algorithm of Verdü [42] requires a backward-forward re- 

cursion, due to which it has high latency. We derive an optimum soft-output algorithm 

with a forward-only-recursion which operates on the standard matched filter statistics. The 

algorithm has complexity similar to the OSA of Li et al. We derive a reduced-complexity 

sub-optimal version of this algorithm which requires add-compare-select operations mostly. 

We also derive a reduced-state alternative to the OSA algorithm. The algorithm is obtained 

by modifying the algorithm of Lee et al. [25] which fails to generate reliable soft information. 

The complexity of the various algorithms is tabulated. The error-rate performance of the 

various algorithms is compared via simulation of a DS-CDMA system with convolutional 

coding and interleaving. 

The thesis is organized as follows. In Chapter 2, we describe the system models for 

a single-user system with ISI and a multiuser DS-CDMA system. We describe optimum 

equalization and joint equalization/multiuser detection techniques for time-varying trans- 

mission media. In Chapter 3, we develop a new fractional MLSE receiver for systems with 

excess signal bandwidth and discuss its merits compared to other receivers. Chapter 4 deals 
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with analysis, classification and comparison of reduced trellis and tree search algorithms. 

In Chapter 5. we describe bias-compensation for matched-filter type receivers and compare 

the performance of the various receivers via simulation and approximate bounds which are 

obtained in this chapter. In Chapter 6, we derive novel soft-output algorithms and compare 

their performance via simulation. Conclusions are drawn and future work is discussed in 

Chapter 7. 



CHAPTER 2 

Optimum equalization and multiuser detection 

2.1    Introduction 

Maximum-likelihood sequence estimation (MLSE) is an optimum detection technique 

for'signals corrupted with intersymbol interference (ISI) and additive white Gaussian noise 

(AWGN). The technique minimizes the probability of sequence error for a priori equi- 

probable sequences. Forney [13] provided the first MLSE formulation by noting the ap- 

plication of the Viterbi algorithm to equalization over a known time-dispersive, linear and 

time-invariant channel. Forney's formulation employs a filter matched to the overall channel 

impulse response (the standard matched filter) followed by a discrete-time noise-whitening 

filter1 to produce discrete-time sufficient statistics which are processed by the Viterbi al- 

gorithm. Ungerboeck [40] later derived an alternative MLSE formulation which consists of 

just the standard matched filter and the Viterbi algorithm with a modified metric. The 

latter formulation was extended for the case of known time-varying channels by Bottomley 

et al. [6]. Verdu [43] derived an optimum multiuser detector for direct-sequence code- 

division multiple-access (DS-CDMA) channels with AWGN. The detector finds the joint 

maximum likelihood sequence of symbols for all users transmitted asynchronously over a 

common channel. Verdu's multiuser receiver is really an extension of Ungerboeck's MLSE 

formulation to joint detection of multiuser signals. 

In this chapter, we describe optimum receivers for single-user equalization and joint 

equalization/multiuser detection for DS-CDMA systems in a known time-varying environ- 

ment. This chapter sets up the system models and notation which is followed throughout 

The cascade of the two filters is referred to as the whitened matched filter. 



the thesis. The chapter is organized as follows. In Section 2.2, we present the model for a 

single-user system with ISI. In Section 2.3, we describe the functionality of an MLSE re- 

ceiver. In Section 2.4, we re-derive the Ungerboeck-Bottomley formulation for time-varying 

channels. In Section 2.5, we describe the model for a multi-user DS-CDMA system. In 

Section 2.6, we obtain an optimum receiver for joint equalization/multiuser detection as an 

extension of the Ungerboeck-Bottomley formulation. 

2.2    System model 

Consider the transmission of linearly-modulated digital data over a linear, time-dispersive 

medium. The system model consists of a transmitter, a linear time-varying transmission 

medium and a receiver. The baseband transmitted signal is modeled as 

JV-l 

st(t)=
y£and(t-nT) . (2.1) 
n=0 

where d{t) is the impulse response of the transmit filter and {an}„~Q is a finite sequence 

of complex symbols (taken from a finite alphabet .4). The radio signal transmitted propa- 

gates through the medium to reach the receiver where it is converted to a complex-valued, 

baseband signal y(t), given by 

y(t)  =  g(T]t)*st(t) + w(t) 

=    fg(t-X]t)st(X)d\ + w(t) (2.2) 

where g(r; t) is the output of the transmission medium at time t when an impulse is applied 

at time t-T and w(t) is a complex white Gaussian noise process with power spectral density 

N0. Substituting (2.1) in (2.2), we get 

N-i 

y(t) =  J2 «»*(* ~ nT' *) + WW (2'3) 

n=0 

where h(r; t) models the overall response of the transmit filter and the transmission medium 

and is given by 

h(r;t) = /g(r - \;t)d(\)d\. (2.4) 

The received signal y(t) is collected over a finite time interval, denoted J5 which is much 

larger than [0,(N - 1)T]. The response h(r;t) is assumed to be square integrable over the 



interval /. i.e. 

/     \h(T;1)\2dT < oc   for / e 1. (2.5) 

2.3    Maximum likelihood sequence estimation 

A maximum likelihood sequence estimation (MLSE) receiver finds the hypothetical se- 

quence of symbols {an} (an € A) that maximizes the likelihood of the received signal y{t) 

given that {an} was transmitted. Assuming equiprobable symbols, an MLSE receiver max- 

imizes the log-likelihood function derived from the a posteriori distribution of the received 

signal. Ignoring constant scaling factors and additive terms, the log-likelihood function 

reduces to 

N-l 2 

dt, (2.6) JH = -        \y(t) - yH(t)\2 dt = - y(t) - Y) anh(t - nT; t) 

where H is the hypothesis corresponding to the sequence {an}. It is assumed thut y(t) is 

band-limited in the receiver front end, using a bandwidth larger than the signal bandwidth, 

so that the integral in (2.6) is well defined. 

2.4    The Ungerboeck-Bottomley formulation 

In this section, we re-derive an MLSE formulation following the development of Bot- 

tomley et al. [6]. The receiver is an extension of Ungerboeck's MLSE formulation [40] to 

time-varying channels. 

The log-likelihood function JH can be expanded as 

where 

JH = A + BH + CH, (2.7) 

A = - I  \y(t)\2dt, (2.8) 
Jtei 

BH= j    m*\iralh\t-nT-,t)y{t)\dt, (2.9) Jt€I        U=o J 
N-1N-1 

Cff = -JtIYlYl <akh*(t - nT; t)h{t - kT; t)dt. (2.10) 
,t€l n=0 fc=0 
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Since term A is independent of the sequence hypothesis, an MLSE receiver chooses the 

sequence hypothesis that maximizes the metric 

AH = BH + CH. (2.1 r 

Terms BH and CH can be written as 

A'-l 

BH = J2 2Re {«")} > 
n=0 

N-l N-l 

CH = -Y1 £ anaks{n - k; n), 
n=0 it=0 

(2.12) 

(2.13) 

where {z(n)}N~Q  is the sequence of symbol-spaced samples obtained at the output of a 

receive filter matched to the channel impulse response h(r;t), as 

z{n) = h*(-r; t-r)* y(t)\t=nT =  f    h*(t - nT; t)y(t)dt (2.14) 

and the s parameter is the sampled channel autocorrelation function, given by 

*(/;n)= /    h*(t-nT;t)h(t-(n-l)T;t)dt 
JtPl 

(2.15) 

where n € {0,1,. ..,N - 1} and / € {0,±l,...,±(iV - 1)}.   Noting that s*(k-n;k) 

s(n - k; n) and using the following identity for multi-dimensional summation 

/    / / n-l 

x(n, n) + J2 (x(n'k) + x(k'n)) 
Jfc=t 

(2.16) 

the term CH can be expanded as 

N-l 

CH = -T, 
n=0 L 

n-l 

al<xns(0; n) - J3 2Re«afcs(n - k; n)} 
k=o 

(2.17) 

Substituting (2.12) and (2.17) into (2.11) and letting L be the smallest integer such that 

s(l; n) = 0 for |/| > L, we get the metric as 

N-l 

AH = ^2 r„(an,«7n) (2.18) 
n=0 

where an represents the subsequence hypothesis an : an_i,an-2> • • -i^n-L and rn(a„,an) 

is the branch metric, given by 

Tn(an,<rn) = Re{a*n 2z(n) - s(0; n)an - 2 ^ «(/; n)an-i 
L 

C 
/=i 

(2.19) 
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The receiver can be implemented as shown in Fig. 2.1. The front-end filter in the receiver 

is matched to the overall channel response li(r:t). The Viterbi algorithm in Fig. 2.1 finds 

the sequence {an} that maximizes the metric of (2.18). It does so by computing recursively 

the accumulated metric defined as 

n-l 

M, Ä 
en ,05 a-n — i _i 

i=0 

l„(ff„)= max Y\Tn(at.at) (2.20) 

for all subsequence hypotheses (or states) an. The recursion follows from (2.19) and (2.20) 

as 

Mn(an+1) = max[Mn(<Tn) + Tn(an,an)]. (2.21) 
CXn — L 

The number of states in the Viterbi algorithm is \A\L, where \A\ is the size of the input 

alphabet and L is the overall channel memory in symbols (assumed finite). The output of 

the Viterbi algorithm is the estimated sequence {a,n}. 

y(')  m;—:—n   v  2(n) 
-*■ h*(-T\t-T) _v 

t = nT 
-*■ 

Viterbi 
algorithm  *- 

Figure 2.1: Ungerboeck-Bottomley receiver 

2.5    Multiuser DS-CDMA system model 

Consider a linear, time-dispersive channel shared by K users who transmit independent 

unsynchronized data streams by linearly modulating assigned signal waveforms. The system 

model consists of K transmitters, K independent time-varying and dispersive transmission 

media and one receiver. The baseband signal transmitted by user k is modeled as 

JV'-l 
st,it(t) =  J2 ak{m)dk{t - mT) (2.22) 

where {ak(m)}m~Q is a finite sequence of complex symbols taken from a finite alphabet 

A (common to all users k = 1,.. .,K). The filter dk(t) models the transmit filter for user 

k which, in general, includes a pulse-shaping filter common to all users and a signature 

waveform (spreading code) uniquely assigned to each user which may be pseudo-randomly 

12 



time-varying over the duration of several symbols (long code). The radio signal transmitted 

by each user propagates through a dispersive transmission medium to reach the receiver. 

The receiver sees the sum of the A' signals in AVVGN. The received signal is converted to a 

complex-valued, baseband signal y(t), given by 

A' 

I 
k=i 

y(t) = £ gk{r; t) * st,k(t - n) + w(t) (2.23) 

where gk{r; t) is the output of the transmission medium for user k at time t when an impulse 

is applied at time t-T, rk is the relative delay for user k and w(t) is a complex white Gaussian 

noise process with power spectral density N0. Substituting (2.22) into (2.23), we get 

N'-i K 

»(«) =EE "k{rn)hk(t - mT; t) + w(t) (2.24) 
m=0 Jfc=l 

where hk(r; t) models the overall response of the transmit filter and the transmission medium 

for user k and is given by 

Äfc(r; t) = Jgk(r - A; t)dk(X - rk)d\. (2.25) 

The above model accurately represents the uplink (mobile station to base station) of a DS- 

CDMA cell. The model can be simplified for the downlink (base station to mobile station) 

by considering synchronized user transmission over a single transmission medium. 

From the viewpoint of joint multiuser detection/equalization,  the multiuser system 

model of (2.24) can be represented equivalently in a single-user form as 

JV-l 

n=0 

y(t) = E aK{n)(r,(n))hK{n)(t - rj^T; t) + w(t) (2.26) 

where *(n) and 77(71) represent the user index and the time index respectively and are given 

by 

K(n) = (n mod K) + 1 (2.27) 

,(n)=   ± (2-28) 

and N = N'K is the length of the combined data stream of all users {aK(n)(rj{n))}n~0 

which is ordered in increasing user and time indices assuming rk < Tk+i Vfc, without loss of 

generality . Henceforth, we will use the notation {on}^,1 for the combined data sequence 

of all users for brevity. 
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Note that the above model lias the same form as the single-user model of Section 2.2. 

This allows us to provide a unified treatment for problems of single-user equalization and 

multiuser detection. Throughout this thesis, we will consider receivers for single-user equal- 

ization which also find applications in multiuser detection. A special mention will be made 

where different considerations apply. 

2.6    Joint equalization/multiuser detection 

Noting the similarity between the multiuser system model of (2.26) and the single-user 

model of (2.3), it can be seen that a receiver that performs joint equalization and multiuser 

detection for DS-CDMA systems has the form of the Ungerboeck-Bottomley receiver of 

Section 2.4. The receiver is shown in Fig. 2.2. It consists of a bank of filters each of which is 

matched to the overall channel impulse response of a user. The sequence of joint statistics 

obtained at the output of the bank of filters is given by 

*(«) = K(n)(~r; t-T)* y(t)\t=v{n)T = J^ K(n)(t - V(n)T; t)y{t)dt. (2.29) 

The receiver processes the joint sequence of matched filter statistics using the Viterbi al- 

gorithm which hypothesizes the symbols of all users jointly using the recursion of (2.21), 

where the branch metric is given by (2.19). The sampled channel autocorrelation function 

in this case is given by 

*(/; n)=  I    h*K{n)(t - ri(n)T; t)hK{n_t)(t - t](n - l)T; t)dt. (2.30) 

The receiver is a generalization of Verdu's optimum multiuser detector [43] to linearly 

dispersive and time-varying transmission media. Note that the number of states in the 

Viterbi algorithm is \A\L, where the memory L is defined as the smallest integer such that 
s(!\») (given by (2.30)) equals zero for |/| > L. For non-dispersive media, L = K - 1, while 

for dispersive (frequency-selective) media, L > K - 1. 

For the case of non-dispersive and time-invariant AWGN channels, a baseband asyn- 

chronous DS-CDMA system, with symbol-length (short) spreading codes and rectangular 

transmit pulses, is generally specified in terms of a code partial-correlation matrix polyno- 

mial known as the channel spectrum S(D), given by 

S(D) = SjD~l + 5*o + SiD (2.31) 
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Figure 2.2: Multiuser receiver 

where So is a K x if Hermitian matrix and Si is a K x A' upper-triangular matrix, assuming 

that the users are ordered in increasing delay. The element So(i,j) of the matrix So is the 

partial correlation of the code of user i with the code of user j for the current symbol period, 

i.e. 

So(iJ) = J d?(t - Ti)dj(t - Tj)dt. (2.32) 

The element Sj(i,j) of the matrix Si is the partial correlation of the code of user i with 

the code of user j for the past symbol period, given by 

Si(i,j) = Jd*{{t - r^djit - TJ + T)dt. (2.33) 

In this case, the normalized sampled channel correlations s(l; n) — s(l; n)/s(0; n) are 

given by 

5i(«(n), K{U) -l + K)      n(n) - / < 1 

*(f!«) = \      SbMn), /c(n) - /)       1 < /s(n) -1<K  • 

5i(/c(n) -l-K, K(n))      n(n) -l> K 

The memory of the multiuser channel is K — 1 and there is no ISI. 

(2.34) 
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CHAPTER 3 

Fractionally-spaced MLSE receivers 

3.1    Introduction 

In wireless communication systems, the channel is generally considered as comprising 

a time-invariant transmit (pulse-shaping) filter followed by a time-varying'transmission 

medium. Forney and Ungerboeck's maximum-likelihood sequence estimation (MLSE) re- 

ceivers [13,40] employ an analog front-end filter which is matched to the overall channel 

impulse response. If the transmission medium is time-varying or unknown at the receiver, 

the front-end filter has to be adaptive. This is not desirable for implementation purposes. 

Ungerboeck also described an adaptive receiver in [40] which uses a discrete-time transversal 

filter at the front end to synthesize matched filter characteristics. The receiver, however, 

does not take advantage of the fact that the transmit filter is generally known at the receiver 

and this information can be exploited to improve channel estimation. 

Many wireless radio systems transmit signals with a bandwidth more than the data 

rate. Narrowband TDMA systems based on the IS-54/IS-136 and PDC standards employ 

35% and 50% excess bandwidth, respectively. In the presence of excess signal bandwidth, 

fractional sampling is effective due to its insensitivity to the sampler timing phase [34]. 

Some authors [30,33] have considered using an analog front-end filter which is matched 

to the transmit filter response (transmit matched filter) followed by a fractional sampler. 

They, however, assume that the noise affecting the sampled statistics is white. The branch 

metric of the Viterbi algorithm ignores the correlation in the noise samples. As a result the 

performance improvement is marginal. 

Hamied et al.   [22] derived an MLSE receiver for systems that employ at most 100% 
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excess bandwidth. Their receiver employs a transmit matched filter followed by a fractional 

sampler and a fixed noise-whitening filter. The sequence of statistics thus obtained has white 

noise. However, we note that practical pulse-shaping filters like the square-root raised cosine 

filter have nulls in the Nyquist spectrum, due to which the noise-whitening filter has a long 

slowly-damped delay response. Any practical length truncation of the filter leads to severe 

distortion. 

Following the development in [6], we derive an Ungerboeck-type receiver which does 

not need noise-whitening. The branch metric of the Viterbi algorithm accounts for the 

correlation in the noise samples affecting the fractionally sampled statistic obtained at the 

output of a transmit matched filter. An adaptive algorithm exploits the knowledge of the 

pulse-shaping filter and adapts just the fractionally-spaced medium response coefficients. 

However, the branch metric for the receiver depends on future medium response coefficients 

up to the span of the medium response. The prediction (adaptation) of these future co- 

efficients using decision feedback would result in excess estimation error and thus degrade 

performance. We derive an alternative formulation for the branch metric which depends on 

causal medium response coefficients only. Thus, only one step prediction is needed to adapt 

the medium response coefficients. The receiver is suitable for systems with excess signal 

bandwidth and rapidly time-varying channels. 

The chapter is organized as follows. In Section 3.2, we describe the channel model for 

a single-user system with excess signal bandwidth. A fractional Ungerboeck-type receiver 

is then derived in Section 3.3. In Section 3.4, we discuss the receiver of Hamied et al.. A 

new fractional MLSE receiver that does not need noise-whitening and minimizes channel 

prediction is described in Section 3.5. 

3.2    Channel model 

Consider the single-user system model of Section 2.2. If the baseband transmitted signal 

st(t) has bandwidth W < u/2T, where v is an integer, then an arbitrary medium response 

g(r;t) can be modeled as a fractionally-spaced tapped delay line [41, pp. 

9(r; 0 = E cUT/u; t)6(r - jT/u) (3.1) 
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where 

c(jT/v;t) = c(j;t) = J g(r: /)sinc {^fj~) dr. (3.2) 

Assuming that the medium response can be well-approximated by Lc + l fractionally-spaced 

taps (i.e. c{j:t) = 0 for j > Lc), the overall channel impulse response can be written as 

Lc 

h(r; /) = g(T-1) * d(r) = ]T c(j; t)d{r - jT/v). (3.3) 
j=o 

Typically, \ < WT < 1 for full-response signaling and WT < \ for partial-response sig- 

naling (continuous phase modulation) used in narrowband mobile communication systems. 

Symbol-spaced channel models have been used to develop MLSE receivers [24,38]. Symbol- 

spaced MLSE receivers yield close to optimum performance if the excess signal bandwidth 

(WT in excess of |) is small. However, the performance of these receivers is highly sensitive 

to the timing phase [22] in the presence of excess bandwidth. This is due to the inability of 

a symbol-spaced transversal filter to invert a null in the sampled signal spectrum without 

excessive noise enhancement [34]. Fractionally-spaced MLSE receivers, on the other hand, 

are insensitive to the timing phase as aliasing does not occur in the sampled signal spectrum 

in the case of a fractionally-spaced transversal filter. 

3.3    A fractional Ungerboeck-type receiver 

Adaptation of channel parameters is usually needed for an MLSE receiver on time- 

varying channels. Ungerboeck's adaptive receiver [40] consists of a fractionally-spaced 

transversal filter followed by a symbol-rate sampler and a Viterbi algorithm. The coef- 

ficients of the front-end filter and the sampled channel autocorrelation function V are 

adapted using a stochastic steepest descent algorithm. The s parameters are needed to 

compute the branch metric (2.19) in the Viterbi algorithm. Note that the s parameters 

depend on the transmit filter response and the medium response. Since the transmit fil- 

ter response is known at the receiver, channel estimation can be improved by adapting the 

medium response coefficients directly instead of adapting the s parameters. The formulation 

of Section 2.4 can be modified for this purpose as shown in [6] for the case of symbol-spaced 

channel models. 

Substituting (3.3) in (2.14) and (2.15), and assuming that the medium response coeffi- 
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cients c(j:t) are fixed (time-invariant) over the span of the transmit filter response1 d(1). 

we get 

Lc   Lc        , iN      (_ .      k 

(3.4) 

j=Ofc=0       V 

where the discrete-time medium response coefficients are denned as c(j;i) = c{jT;iT) for 

values of i in multiples of T/v and {Y(-)} is the sequence of fractionally-spaced samples 

obtained at the output of a receive filter matched to the transmit filter response d(t), as 

yHW«'(-H)T)'w* (36) 

and <t>(i) is the fractionally-sampled autocorrelation function of the transmit filter, given by 

m=JtJ*(t)d(t+f)dt. (3.7) 

y(t) d*(-t) 
Jin + i) 

t={n+i)T 
(r,n+i) 

z{n) Viterbi 
algorithm 

Figure 3.1: A fractional Ungerboeck-type receiver. 

The receiver is shown in Fig. 3.1. It has a front-end filter matched to the transmit filter 

response <*(*), followed by a fractional-rate sampler. The fractionally-sampled statistic is 

filtered by an adaptive discrete-time filter and fed to a Viterbi algorithm. The Viterbi 

algorithm uses the branch metric of (2.19) with the s parameters given by (3.5). Note that 

the receiver in Fig. 3.1 has a fixed analog front-end filter unlike the receiver of Fig. 2.1, 

where the front-end filter is adaptive. 

Note from (3.4) and (3.5), that the branch metric at time nT given by (2.19), depends 

on medium response coefficients for times up to (n + Le/v)T. Thus, medium response coeffi- 

cients have to be predicted (for Lc +1 future steps) in the adaptive receiver of Fig. 3.1. The 

accuracy of prediction decreases in general with the number of steps over which prediction 

»The assumption makes sense when the time variation in the channel coefficients c(j;t) is slow relative 

to the span of the transmit filter. 
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is required. This makes the adaptive receiver of Fig. 3.1 unsuitable for channels with rapid 

time variation. 

3.4    Hamied's fractional MLSE receiver 

An alternative receiver is obtained by noting that the statistic given by (3.6) can also 

be expressed as 

Y (» + £)=!> (»'; * + i) i £   W)*B+2=i=i + v (n + J~) (3.8) 

where {v(-)} is a complex Gaussian noise sequence with autocorrelation 

EH (n + i)V*\m+J   =iVo</>((n-m)^+j-i), (3.9) 

ak/i (3.10) 
a,-  if   k = if,   i is an integer 

0 otherwise 

and Ld is the smallest integer such that <j>(i) = 0 for \i\ > Lj. Thus, it is assumed that 

the transmit filter has a finite impulse response. In practice, transmit pulse-shaping filters 

like the square-root raised cosine (SRRC) filter are truncated to a span of several sym- 

bols. Let the D-transform of the transmit filter autocorrelation function <f>{n) (the sampled 

autocorrelation spectrum) be defined as 

*(/?)=    ^   #n)£n (3.11) 
n=-Ld 

where D stands for fractional symbol duration. 

Hamied et al. [22] obtain an adaptive MLSE receiver by assuming that the statistic 

{Y(-)} obtained at the output of the front-end filter in Fig. 3.1 can be whitened by using 

a fixed noise-whitening filter. The noise-whitening filter is determined by factoring the 

sampled autocorrelation spectrum $(D) as 

$(Z>) = F'*(D-1)F'(D). (3.12) 

In case the transmit filter spectrum has no roots on the unit circle, the factor F'(D) = 

J2n=o f'(n)Dn is chosen such that all its roots are outside the unit circle. The anti-causal 

noise-whitening filter is then given by Ff*(D~1))-1 which is stable in the sense that its 

coefficients are square summable. 
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Figure 3.2: Sampled autocorrelation spectra for SRRC pulses truncated to 500 symbols (a) 

ß = 0,(b)ß = 0.35, (c) ß = 1. 

10 

-10 

-20 

-30 - 

-40 

-50 

-60 

-70 
0.1 0.2 0.3 0.4 0.5 0.6 

Normalized frequency 
0.7 O.B 0.9 

Figure 3.3: Sampled autocorrelation spectra for SRRC pulses truncated to 10 symbols (a) 

ß = 0, (b) ß = 0.35, (c) ß=l. 
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For many practical pulse-shaping filters like the SRRC filter, the sampled autocorrelation 

spectrum  has zeros on  the unit  circle.    This is illustrated  in  Fig. 3.2 which shows the 

amplitude of the sampled autocorrelation spectrum for SRRC pulses (truncated to a span 

of 500 symbols) with various roll-off factors.  The spectrum exhibits nulls in the Nyquist 

bandwidth 1/T (corresponding to v = 2).   This is true for all SRRC pulses with roll off 

factor ß £ [0,1].  The noise-whitening filter does not exist for these pulses as the nulls in 

the Nyquist band can not be inverted. Fig. 3.3 shows the sampled autocorrelation spectra 

for the same SRRC pulses but with a truncation of 10 symbols.   Note that the nulls are 

less severe in this case. Strictly speaking, the noise-whitening filter exists for all practical 

finite-length transmit pulse-shaping filters. However, due to the presence of zeros near the 

unit circle, the noise-whitening filter has a long slowly-damped impulse response and any 

practical length truncation results in severe distortion. Fig. 3.4 shows the effect of truncation 

of the noise-whitening filter. The squared error resulting from truncation is given by 

\\Ft(D)-F'(D)\\2 (3.13) 

where F'(D) is the whitened channel spectrum obtained from using a truncated noise- 

whitening filter W(Z)-1) as F'(D) = WCT?"1)*^). Fig. 3.4 shows the squared error for 

the SRRC pulse of Fig. 3.3 (truncated to 10 symbols) with ß = 0.35 and v - 2. Note that 

the squared error exhibits damped oscillations and is significant even with 500 taps of the 

noise-whitening filter (spanning 250 symbols). The error would increase with the length of 

the SRRC pulse because the nulls would be deeper as demonstrated in Fig. 3.2. 

3.5    A new fractional MLSE receiver 

In this section, we derive an alternative fractional MLSE receiver that does not require 

noise-whitening unlike the receiver of Hamied et al. [22]. Moreover, it does not require 

extra prediction for the medium response coefficients, unlike the Ungerboeck-type receiver 

of Fig. 3.1. 

Substituting (3.4) into (2.12) and making a change of variables gives 

BH = "£ £ 2s4sk+^' (*»+=) y (»+ =)) • (3.14) 
n=0m=Q [j=0 " \ V J        \ Vj J 
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Figure 3.4: Squared error due to truncation of the noise-whitening filter for SRRC pulse 

truncated to 10 symbols with ß = 0.35. 

Substituting (3.5) into (2.13) and making a change of variables gives 

(N-l)v Lc (N-l)v Lc ,     _N      /    t.\ 

en— E E E £<V,^(A=)«(,i£)«"-*)- n=0   j"=0    Jt=0    f=0 \        /       \       / 

Using (2.16), CH can be written as 

(3.15) 

CH=   ~   E££Re\c*(f,n+^)a*n+m=JL   ^(0)EM^ + 7j«n+-i 
n=0m=0j=0 I       V VJ "     I 1=0     V 7 

!&(ffic('in+v)0»^    }■ 
t=l 7=0     V ' J ) 

+   2 

Thus, the metric AH in (2.11) can be written as 

N-l 

AJJ = Yl r^(an,o-n) (3.17) 
n=0 

where T'n(an,an) is the branch metric, given by 

T'n(an,(rn) = 

m=0j=0 K       V ' 
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-o(0)£c(/:» + ^)aB + ^-2£p(/)£o(/:,,+ 
7»  — 7 

I      .   m. t3.1X) 

Again using (2.16) for the term involving <?(0) in (3.18). the branch metric can alternatively 

be written as 

T'n(an,an) = 
f-l   Lc 

m=0 j=0 
J>+7J<+.— 2r(» + ^)-^(0)(c(i;n + ^)aIi+! 

+ 2f e(H/;n^)a^|-2^0t(';»+v)a^   }Z .19) 

The receiver is shown in Fig. 3.5.   It employs a fixed front-end filter matched to the 

transmit filter response. The output of the front-end filter is sampled at the fractional-rate 

and fed to a Viterbi algorithm. The number of states in the Viterbi algorithm is \A\L, where 

I _ |   '+LrfJ is the,, overall channel memory in symbols. The Viterbi algorithm processes 

v samples of the input statistic every symbol time T. The branch metric given by (3.18) 

or (3.19) has v terms corresponding to each sample.   Note that an v step prediction of 

medium response coefficients is needed to compute the branch metric at each recursion. An 

alternative approach is to process one sample of the input statistic every T/u seconds by 

computing one component (of the v components) of the branch metric at each recursion 

followed by an update of the medium response coefficients. An advantage of this method 

is that the medium response coefficients can be estimated more accurately as only one step 

prediction is performed at the fractional rate. 

y{t) 
d*(-t) _\ Y(n + i) 

-(•+*)■ 

Viterbi 
algorithm 

to 

Figure 3.5: A new fractional MLSE receiver 

For a symbol-spaced channel model {y = 1), the branch metric given by (3.19) simplifies 

rn(an,0-n) = 
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Li Lc 

- 2 ]P <j>(i) ^2c (';" ~ 0 Qn-.-/ 

2V(n)-d(0) ( c(j;n)Q„_j +2 ^ r(j + /:H)«„-J-/ 

(3.20) 

t=i /=o J J 

which reduces to the "Partial Ungerboeck" formulation of Bottomley [6] for the case of 

Nyquist pulse-shaping (i.e. <p(n) = S(n)). 

3.6    Conclusions 

In this chapter, we derived a new MLSE receiver for linearly-dispersive time-varying 

channels with additive white Gaussian noise. The receiver consists of a fixed analog front- 

end filter matched to the transmit pulse-shaping filter, a fractional sampler and a Viterbi 

algorithm. The branch metric of the Viterbi algorithm accounts for the correlation in the 

noise samples (due to fractional sampling) which is known at the receiver. The bfranch 

metric depends on causal fractionally-spaced medium response coefficients which can be 

adapted using only one step prediction. The receiver is suitable for communication systems 

with excess signal bandwidth and rapidly time-varying channels. 
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CHAPTER 4 

Reduced Trellis and Tree Search Algorithms 

4.1    Introduction 

Maximum-likelihood sequence estimation (MLSE) [6,13,40,43] is an optimum detection 

technique for channels with memory and additive noise. As the complexity of the various 

MLSE algorithms is exponential in the channel memory, several low-complexity suboptimal 

methods have been proposed. One method is to ignore the tail of the delay response or to 

select a subset of states in the Viterbi algorithm for reduced state detection [14,45]. The 

residual interference that remains limits the performance of these methods even at modest 

intersymbol interference (ISI) levels [32]. Another approach is to pre-cancel the tail of the 

delay response using a linear or a decision feedback equalizer (DFE). The DFE approach 

[26,49] suffers from severe error propagation on channels where the tail contains a significant 

fraction of the total energy in the channel while the linear pre-filtering approach [12,35] 

enhances noise. 

Decision feedback sequence estimation (DFSE) [7,8,10,11,17,19,20,39,50] and the M- 

algorithm [2,48,51] are two well-known reduced-complexity alternatives to MLSE. These 

algorithms find applications in equalization of ISI [7,8,10,17,19,20,39,50], detection of 

partial response signals, trellis-coded modulation [8,10,11] and multiuser detection [17,19, 

20,48,51]. DFSE is a trellis-based method where the complexity is controlled by reducing 

the memory of the trellis in the Viterbi algorithm. On the other hand, the M-algorithm 

is a tree-based method where the complexity is reduced by pruning the tree (representing 

sequence hypotheses) to maintain a given number of branches at each step. Both schemes 

feed back conditional decisions taken from survivor paths to cancel the tail of the delay 
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response.   This manner of decision feedback has been shown to alleviate the problem of 

error propagation that arises in the conventional DFE approach. 

DFSE and M-algorithm receivers were originally proposed and thoroughly investigated 

for discrete-time statistics containing white noise for which case they have been thoroughly 

investigated [2,8,10,39,48]. However, receivers that operate on matched filter statistics 

have also been proposed for various applications [7,17,48,50,51]. The main advantage of 

these receivers is that they do not require noise-whitening. Computing the noise-whitening 

filter involves channel inversion and/or factorization operations which may not be feasible 

for time-varying, cyclo-stationary or bidirectional channels, or for channels with deep spec- 

tral nulls. Applications that particularly involve such channels include multiuser detection 

for direct-sequence code-division multiple-access (DS-CDMA) systems [19], bidirectional 

equalization for the global system for mobile communications (GSM) system [50] and frac- 

tional equalization for narrowband systems with excess signal bandwidth. An investigation 

of the DFSE and M-algorithm receivers with matched filter statistics is given in [20] and 

[48] respectively. It has been noted that the receive filter has a significant influence on the 

bit-error performance of these receivers. 

In this chapter, we consider DFSE and M-algorithm receivers operating on the out- 

put of a general transversal processing filter which follows a front-end matched filter. We 

provide two different formulations of the branch metric — one for the case of standard 

matched filtering (front-end filter matched to the overall channel response) and the other 

for the case of transmit matched filtering (front-end filter matched to the transmit filter 

response). The latter formulation is desirable for fractional equalization in the presence of 

excess signal bandwidth. We conduct a first event error analysis of the various receivers 

which indicates that error events in certain receivers depend on the transmitted sequence. 

The error-rate performance of such receivers is affected, and generally dominated, by un- 

treated interference components which we call bias. Bias occurs in a DFSE or M-algorithm 

receiver due to a mismatch between the processing filter and the branch metric. This leads 

to the classification of the various receivers as biased and unbiased, where the notion of 

"unbiasedness" means that error events are independent of the transmitted sequence given 

the error sequence. 

We find that there exist only two processing filters for each type of matched filtering 

(i.e. standard and transmit) that result in unbiased receivers, namely the filter that whitens 
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(or partially decorrclates) the effect of the matched filter and the filter that zero-forces (or 

completely decorrelates) the effect of the matched filter. The whitening filter DFSK (WT- 

DFSE) and whitening filter M-algorithm (WF-MA) receivers with a standard matched 

filter are the well-known receivers described in [2.8,10,39.48]. The zero-forcing DFSE (ZF- 

DFSE) receiver with a standard matched filter was derived in [37]. The class of biased 

receivers includes matched filter DFSE (MF-DFSE) and matched filter M-algorithm (MF- 

MA) receivers where the matched filter statistic is fed directly into the reduced trellis or 

tree search algorithm without further processing. The MF-DFSE(S)1 receiver was proposed 

in [7,50]. The MF-MA(S) receiver was proposed in [51] for multiuser detection. 

We find the probability Pr(e) of the occurrence of a given first event error e for the various 

DFSE receivers. The probability Pr(e) in the case of unbiased DFSE receivers is completely 

characterized by the error distance 6(e) of the receiver. We use a broader definition for the 

error distance (than given in [13]) that includes the effect of noise enhancement. In the 

case of BPSK modulation, the probability Pr(e) for an unbiased DFSE receiver is equal 

to the error probability of a memoryless system with signal amplitude equal to 56(e). 

We show that the error distance is maximized by the MF-DFSE(S) receiver. However, 

the error performance of the MF-DFSE(S) receiver is dominated by untreated interference 

components (bias) for most channels of interest and is therefore not very good. Among 

unbiased DFSE receivers, the error distance is maximized by the WF-DFSE receivers for 

each type of matched filtering. We also show that the error distance of truncated memory 

MLSE receivers that employ pre-filtering to reduce memory [12,35], is lower than the error 

distance of WF-DFSE. Thus, WF-DFSE receivers have the best error performance among 

these unbiased trellis-based receivers, not considering the effects of error propagation. 

We obtain approximate upper bounds on the symbol error probability of the various 

DFSE receivers assuming absence of error propagation. We show that these bounds can be 

evaluated using a generating function method similar to MLSE, clearing the misconception 

that a generating function method is not applicable to DFSE receivers due to the use of 

decision feedback [39]. 

The chapter is organized as follows. The system model is given in Section 4.2. MLSE 

receivers that consist of a front-end matched filter followed by a general transversal process- 

ing filter are described in Section 4.3. The corresponding DFSE and M-algorithm receivers 

'Where 'S' stands for standard matched filtering. 
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are described in Sections 4.4 and 4.5, respectively. In Section 4.6. we conduct a first event 

error analysis of the various receivers. Sections 4.7 and 4.8 deal with unbiased and biased 

receivers, respectively. In Section 4.9, we discuss truncated memory MLSE receivers that 

employs pre-filtering to reduce memory. In Section 4.10, we derive bounds on the symbol 

error probability of the various trellis-based receivers and in Section 4.11. we compare the 

error distance of the various receivers. In Section 4.12, we show how the bounds can be 

evaluated using an error state diagram. We compare the error-rate performance of the 

various receivers in Section 4.13 for a symbol-sampled system and a fractionally sampled 

system via simulation and analysis for some example channels. 

4.2 System model 

In this chapter, we assume the same system model as in Section 2.2 except with a 

time-invariant transmission medium. Thus, the baseband received signal is given by 

N-i 

y(t)=  £a„fc(*-nr)+ «;(*) f4'1) 
n=0 

where h(t) represents the overall response of a transmit filter d(t) and a time-invariant 

transmission medium, which is modeled as a tapped delay line with Lc complex-valued 

symbol-spaced tap coefficients c(t), 

Lc 

h(t) = y£c(i)d(t-iT). (4.2) 
t'=0 

4.3 A generalized MLSE receiver 

Maximum likelihood sequence estimation (MLSE) is an optimal detection algorithm 

that minimizes the probability of sequence error for a priori equiprobabk sequences. In 

this section, we describe an MLSE receiver with a general transversal processing filter. The 

processing filter has no influence on MLSE performance as we will see in the next section. 

However, the expressions developed in this section will be useful when we consider the effect 

of the processing filter on reduced trellis and tree search algorithms. 

It is well-known [6,13,40] that the sequence of symbol-spaced samples {z(n)}„~o ob- 

tained at the output of a receive filter matched to the overall channel impulse response h(t) 

forms a set of sufficient statistics for detecting the transmitted sequence {an}%~Q given the 
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received signal </(/). The matched-filter statistic ~(n) is given by 

z(n)   =   h"(-t)* y(t)\t=nT = J /»"(/ - vT)y(t)df (-1.3) 

In vector notation, the sequence of matched-filter statistics can be written as 

z = Sa + u (4.5) 

where a = [a0,au .. .,aN_l]T, z = [z(0),z(l),.. .,z(N - l)f, u = [u(0),«(l) «(Ar- 

l)]r, and S is an N x N Hermitian Toeplitz2 matrix known as the channel spectrum. The 

(ij)-th. element of S is given by 

*(ij) = *(*' - j) = j h*{t)h{t + (i - j)T)dt. (4.6) 

The elements s(i) are samples of the autocorrelation function of the overall channel response 

which is assumed to have finite span. The smallest integer L such that s(i) = 0 for \i\ > L 

is known as the channel memory. We assume that the channel memory L is much smaller 

than the length N of the transmitted sequence. The matrix S is thus banded. The vector 

u is a discrete Gaussian noise vector with elements 

u(n)= /    h*(t-nT)w(t)dt (4.7) 
Jtei 

and autocorrelation E[uFu] = N0S. 

Consider a transversal processing filter P which processes the output of the matched 

filter. The output of the processing filter, which is an N x N matrix, is given by 

x = Pz = P(Sa + u). (4.8) 

From (4.5), it follows that x = [x(0),x(l),...,x(N- 1)]T is a Gaussian random vector with 

mean PSa and autocovariance N0PSPH, given the information sequence a. Assume that 

the inverse processing filter P~l exists. Then, it is possible to recover the original sequence 

z_ from the filtered sequence x. Thus, the sequence x forms a set of sufficient statistics for 

detecting the transmitted sequence a given the received signal y(t). 

Consider the receiver shown in Fig. 4.1. The receiver finds the hypothetical sequence 

of symbols {<*„} (an G A) that maximizes the likelihood of the received signal y(t) given 

i.e. the elements of S satisfy s(i,j) --■ s(i — j). 
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filter P 

x(n) 
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algorithm h'(-t)  >■ 

t = nT 

Figure 4.1: A generalized MLSE receiver 

that {«„} was transmitted. Assuming equiprobable symbols, the receiver maximizes the 

log-likelihood function derived from the a posteriori distribution of the received signal. 

Ignoring constant scaling factors and additive terms, the log-likelihood function reduces to 

jH = _(z _ PSafiPSP1*)-1^ - PS a) (4.9) 

where the superscript H stands for Hermitian transpose and the subscript H corresponds 

to the hypothesized sequence a. Neglecting terms common to all hypotheses, the metric to 

be maximized by the Viterbi algorithm can be written as 

AH = 2Re{aHp-1x} - aHSa. (4.10) 

Assume that the matrix S is positive definite. Then, it can be decomposed into its unique 

Cholesky factors as 

S = FHF (4.U) 

where F is an N x N invertible lower-triangular matrix. For N > L, the matrix F is near 

Toeplitz3. Also note that 

S = F? F+ 

where F+ is an (N + L) X N matrix with elements 

(4.12) 

f(iJ)={ 
f(i-j)  0<i-J<L 

0 otherwise 

(4.13) 

obtained from the inverse z-transform of the minimum-phase Cholesky factor F(z) of the 

z-transform of {s(i)}. Then, the metric in (4.10) can be written as 

AH = 2Re{aHP~1x} - \\F+a\ (4.14) 

3The matrix has constant elements along each diagonal except the elements in some bottom rows. 
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The metric can be approximated as 

AH ~ 2Re{owy-1
:r} - \\Fa\\2 

(4.151 

where F is an A" x N lower-triangular Toeplitz matrix with elements given by (4.13). The 

approximation in (4.15) is a result of premature trellis termination in the Viterbi algorithm 

at the tail of the transmitted sequence. We adopt the approximate expression for the 

total metric (4.15) rather than (4.14) for simplicity of notation and analysis. In order to 

be consistent then, we let S = FHF throughout the rest of the chapter, without loss of 

generality. 

The two expressions for the total metric (4.10) and (4.15) lead to two different additive 

decompositions (branch metrics). In order to obtain a general expression for the branch 

metric, we write the channel spectrum as 

S = RQ 

where R is an N x N upper-triangular Toeplitz matrix with elements 

,.  ., r(*-j)  -lr <i-j<0 

0 otherwise 

where lr is either 0 or L and Q is an N x N Toeplitz matrix with elements 

(4.16) 

(4.17) 

?(*\j) = - 
q(i - j)  -L + lr<i-j <L 

0 otherwise 
(4.18) 

In (4.10), R = I and Q = S while in (4.15), R = QH = FH. 

Assume that the inverse processing filter consists of lp + lf + 1 coefficients (/„ + 1 causal 

and // anti-causal). The elements of the N x N banded Toeplitz matrix P"1 are given by 

P'(ij)= < 
PV - J) -h <i-j <lP 

0 otherwise 
(4.19) 

This structure for the inverse processing filter encompasses many filters of interest, including 

the zero-forcing filter and the noise-whitening filter. 

Using (4.17), (4.18) and (4.19), the total metric in (4.10) can then be written as 

A* = 2Re{a"[(p->)S]} + 2Re{[aH(p-*f°]x} - [aHR][{Q)^ - [aHR{Q)UD]a (4.20) 
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where the superscripts L. U and D denote the lower-triangular, the upper-triangular and 

the diagonal part of a matrix, respectively. The above form for the total metric leads to 

the additive decomposition 

AH=Y/T(an,an) (4.21) 
n=0 

where r(a„,ff„) is the branch metric corresponding to the state a„ : an_i,...,a„-L„ (Lv - 

max(L,//)) in the trellis of the Viterbi algorithm, given by 

r(an,0   =   2Re\a*nJ2pV)<ri-l) + x(n)'£p'(-l)a:_l 

1=1 

-(tr(-l)<-) (iX'K-,) -*n£>(-/) X>(~*K-,-* (4-22) 

where an = 0 for tf - 1< n< 0 and x(n) = 0 for n< 0. The Viterbi algorithm recursively 

computes the accumulated metric given by 

M(<rn+i)= max [X(a„) + r(a„,an)]. (4.23) 
Cn-Lv 

for all subsequence hypotheses (or states) an. The number of states in the Viterbi algorithm 

is 1^1^ (note that the memory of the Viterbi algorithm Lv may be greater than the channel 

memory L). The output of the Viterbi algorithm is the estimated sequence {an}. 

m d*(-t) _^H. 
t = nT 

Processing 
filter P 

x'(n) Viterbi 
algorithm 

Figure 4.2: An alternative MLSE receiver 

An alternative MLSE receiver is shown in Fig. 4.2. It differs from the receiver of Fig. 4.1 

in that it has a front-end filter which is matched to just the transmit filter response d(t) 

instead of the overall channel response h(t). The transmit filter matched-filter statistic z'{n) 

is given by 

z'(n)  =   d*(-t)*y(t)\t=nT = fd*{t-nT)y(t)dt 

Ld     Lc 

=    £   £c(tMn,n-0««-i-«- + «'(n) 
l=-Ld t'=0 

(4.24) 
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which can be written in vector notation as 

where ~J = [*'(()), z'(l),..., z'(N - l)]r, «' = [u'(O). «'(1)..... «'(Ar - 1 )}r. The matrix C is 

a lower-triangular Toeplitz matrix with elements 

\ c(i - j)  0<i-j<Lc 
c(i,j)= < (4.26) 

I        0 otherwise 

and the matrix $ is a Hermitian Toeplitz matrix with elements which are samples of the 

transmit filter autocorrelation function 

<f>(i,j) = <j>(i - j) = Jd*(t)d(t + (i - j)T)dt. (4.27) 

Let (j){i) = 0 for \i\ > Lj. The overall channel memory is then L = Lc + Lj.. The vector 

yf is a Gaussian random vector with mean zero and autocorrelation E[u'Hu'] t= N0$. Note 

that the statistic z can be obtained from the statistic z' as z = CHz'. The sequence z', 

thus, forms a set of sufficient statistics for detecting the transmitted sequence given y(t). 

The statistic x' input to the Viterbi algorithm is given by 

x' = Pz' = P($Ca + «')• (4.28) 

The log-likelihood function in this case is given by 

J'H = "(*' - P^>Ca)H(P^PH)-1{x! - P$Ca) (4.29) 

which yields the likelihood metric to be maximized by the Viterbi algorithm in Fig. 4.2, as 

A'H = 2Re{aHCHP~1x!} - aHCH$Ca. (4.30) 

Again two different additive decompositions of the above metric are possible correspond- 

ing to the two decompositions of the matrix $, i.e. 

$ = R'Q' (4.31) 

where the elements of R' are given by 

,..  .,      ,  r'(i-j)  -lr><i-j<0 
r'(i,j)={ (4.32) 

0 otherwise 
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where lr< is either 0 or Lj and the elements of Q' are given by 

q'(i-j)   -Ld + lr< < i-j < Ld 

q'{i,j)= \ (4.33) 
0 otherwise 

In one case R' = I,Q' = 9 and in the other case B! = Q'H = F'H. The matrix F' is a 

lower-triangular Toeplitz matrix with elements /'(?') given by the inverse z-transform of the 

minimum-phase Cholesky factor F'(z) of the z-transform of {<f>(i)}.  Then, (4.30) can be 

written as 

A'H = E r'(on, on) = 2Re{aHCHP-1x'} - aHCHR'Q'Ca (4.34) 
n=0 

where the branch metric T'(an,on) is given by 

I*(an,crB)  =   2ReJ(|v(/K_,) (E^'M» " OJ + ^E^E^-*)«^ 

(Lc lT< \   (Lc Ud 

- E c*(0 E *•'(-*)«;-/-*   E c(0 E ?'(*K-/-fc 
\/=0 fc=0 /    \/=0 fc=l ; 

-     E C*(0 E r'("fc)    E    «'(-"»X-l-ifc-m E C('K-,     • (4-35) 
\;=o k=0 m=o I   \/=o / 

The memory of the Viterbi algorithm in this case is L'v = max(i,ic + //). Note that 

the receiver of Fig. 4.2 can be easily extended for the case of a fractionally-spaced medium 

response model. In this case, the output of the transmit matched filter in Fig. 4.2 is sampled 

at a multiple of the symbol rate (say v/T). The memory of the Viterbi algorithm is \L'v/v\ 

and the branch metric is modified by replacing a„ in (4.35) by x„, given by 

7T„ = < 

aB/„  n/v integer ^ M) 

0      otherwise 

4.4    Decision Feedback Sequence Estimation 

Decision feedback sequence estimation (DFSE) is a reduced complexity alternative to 

maximum likelihood sequence estimation which provides an adjustable performance/complexity 

tradeoff. Proposed by Duel-Hallen et al. [7,8]4 and Eyuboglu et al. [10], the scheme em- 

ploys a reduced trellis search algorithm to search through a subset of sequence hypotheses 

searched by the full-blown Viterbi algorithm. The complexity is controlled by a parameter 
4The algorithm is referred to as Delayed Decision Feedback Sequence Estimation in [7,8] 
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called the memory order ./, which is chosen arbitrarily smaller than the memory of the 

Viterhi algorithm. The trellis in the reduced trellis search algorithm then comprises \A\J 

states corresponding to the ./ most recent symbol hypotheses. Survivor paths or sequences 

are chosen in the reduced trellis search algorithm on the basis of the same cost function 

as in MLSE (i.e. the accumulated likelihood metric). A transition in the reduced trellis 

specifies the J + 1 most recent hypothesized symbols. The remaining L-J symbols needed 

to compute the branch metric are obtained from decisions taken from the survivor history 

(past decisions) of the path. 

y(0. 
h*(- -t)  V 

z{n) 

t = nT 
Processing 

filter P 
x(n) Reduced trellis 

search algorithm 

Figure 4.3: A generalized DFSE receiver 

The DFSE algorithms proposed by Duel-Hallen et al. operate on matched-filter and 

whitened statistics obtained from conventional matched filtering and whitened matched 

filtering respectively. Here we generalize the DFSE algorithm to operate with a general 

transversal processing filter. The receiver is shown in Fig. 4.3. The reduced trellis search 

algorithm has memory order J chosen such that 0 < J < Lv. It employs the recursion: 

M(ßn+1) = max [A4(/?n) + r(an,/?B)] 
°>n-J 

(4.37) 

where ßn : a„_!, e*n_2,..., an-j represents states in the reduced trellis at time n, M{ßn) is 

the accumulated metric of the survivor path associated with state ßn and T(an,ßn) is the 

corresponding branch metric given by 

T(an,ßn)  =  2Re\a*nJ2pVHn-l) + x(n)1£p'(-l)r1:_ 
l=i 

h 

/=0 

lr 

J=0 

L 

I 
U=l 

L-lr 

~      E ri-W-i      E lO)rin-l )-<XnJ2 K-0 E ?(-*)<-/-* (4-38) 
/=0 fc=0 

where at time n 

Vn-i = < 
a„.-i 0<i<J 

dn_,(/3n)  J + l<i<Lv 

(4.39) 
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In (-4.39). {tti(lin)} are tentative conditional decisions on symbols more than J samples in 

the past obtained from the history of the survivor path associated with state 3n. as 

Qn-j(ßn) = arg max [Af(/?„) + r(an./?„)]. 
»n-J 

(4.-10) 

The reduced trellis branch metric r(an,ßn) of (4.38) corresponds to the full trellis branch 

metric T(an,an) given by (4.22). Note that the (whitened matched filter) DFSE algorithm 

of [8] is obtained by substituting P"1 = R = QH = FH and the DFSE algorithm with the 

standard matched filter, proposed in [7], is obtained by substituting P~l = R = I, Q = S. 

In the first case, the whitened channel F with coefficients {/(n)} is minimum-phase. 

y(t) 
d*(-t)  x. z\n) 

t-nT 
Processing 

filter P 
x\n) Reduced trellis 

search algorithm 

Figure 4.4: An alternative DFSE receiver 

An alternative DFSE receiver shown in Fig. 4.4 corresponds to the MLSE receiver of 

Fig. 4.2, in that the front-end filter is matched to the transmit filter response. It follows 

the recursion: 

M'(ßn+1) = max [M'ißn) + T'(an,ßn)] (4.41) 
Qn—J 

where the memory order is chosen in the range 0 < J < L'v and the reduced trellis branch 

metric T'(an,ßn) is obtained by replacing an_,- in (4.35) by 

Vn-i = < 
an_j 0 < i < J 

&'n-i(ßn)  J + l<i<L'v 

where {öj(/3n)} are tentative conditional decisions obtained as 

&n-Aßn) = argmax[M'(ßn) + F(an,ßn)]. 
an—J 

The branch metric is given by 

r'K,<7n)  =   2Re 

(4.42) 

(4.43) 

{ \l=0 /    \/=l / /=0 k=0 ) 
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\/=0 k-0 }    \/=o k=\ 
( Lc lT, Ld-lT, \    i Lc 

\/=0 k=0 
(-i.-i-i; 

m=0 /   \;=o 

With P = R' = Q' = I, we get the case of Nyquist pulse-shaping5 at the transmitter 

and transmit-filter matched-filtering at the receiver. This results in the DFSE receiver 

of [8] where the statistic is white without any linear processing and the channel C with 

coefficients {c(n)} may have any phase (minimum, mixed, or maximum phase). With 

P~l = R' = Q'H = F'H, the whitened channel F'C with coefficients {f'(n)*c(n)} has mixed 

phase in general. With P_1 = R' = I,Q' = $, we get the DFSE receiver corresponding to 

the new fractional MLSE formulation of Section 3.5. 

4.5    M-Algorithm 

The M-algorithm (MA) [2] is well-known as another reduced complexity alternative to 

MLSE. The scheme was originally proposed to operate on white (or whitened) statistics. 

However, it has also been used with the standard matched filter (see for example [48,51]). 

The M-algorithm is essentially a reduced tree search algorithm. At each step, M survivor 

paths (hypothesized sequences) are extended to MA paths, of which the M paths with the 

best accumulated likelihood metric are retained and the rest are discarded. 

y(t) 
h*(-t)  .v z{n) 

t = nT 
Processing 

filter P 
x(n) Reduced tree 

search algorithm 

Figure 4.5: A generalized M-algorithm receiver 

In this section, we extend the M-algorithm to operate with a general transversal process- 

ing filter. The receiver is shown in Fig. 4.5. Let an(j) = (a0, <*i,..., an-i) be one of the M 

survivor paths (j = 1,..., M) at time n. At time n + 1, the reduced tree search algorithm 

extends each survivor into A paths an+1 = (an(j),an) and computes their accumulated 

Using transmit pulses that satisfy the Nyquist criterion for ISI free transmission. 
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likelihood metric using 

Mi^+i) = M(an(j)) + T(an,an(j)) (-1.45) 

where the branch metric T(anian(j)) which depends on the last Lv hypothetical symbols 

an(j) in the survivor path an(j), is given by (4.22). The M paths with the highest accu- 

mulated metric are then selected. 

An alternative M-algorithm receiver has a front-end filter matched to the transmit filter 

response and uses the branch metric of the MLSE receiver of Fig. 4.2, given by (4.35). 

4.6    First Event Error Analysis 

In this section, we examine the first event error (FEE) probability of the generalized 

DFSE receiver of Section 4.4 (Fig. 4.3) and the generalized M-algorithm receiver of Sec- 

tion 4.5 (Fig. 4.5). We say that a first event error is made in the reduced trellis or tree 

search algorithm (at time j) if the correct path is abandoned for the first time in favor of a 

competitor path or paths that diverge from the correct path at time j. Note that our defi- 

nition of a first event error is different from the definition given in [29], in that we consider 

the start time of an error event as the time of its occurrence as opposed to the end time as 

in [29]. We assume that the channel is stationary. Thus, a first event error is independent 

of the start time and time 0 can be chosen as the start time without loss of generality. 

4.6.1    Trellis Search Algorithms 

Consider the generalized DFSE receiver of Fig. 4.3. Let {an} be the sequence of symbols 

transmitted and {bn} (bn : on_i,a„_2,. • .,an_j) be the sequence of states in the path of 

{an} in the reduced trellis of the DFSE receiver (with memory order J). Let {än} be a 

hypothetical sequence of symbols and {&„} be the corresponding sequence of states in the 

reduced trellis that diverges from the correct sequence of states at time unit 0 and re-merges 

with it at a later time (say k), i.e. 

bn = bn for n = 0,k and 6„ + 6„ for 0 < n < k. (4.46) 

A first event error occurs at time 0 if the reduced trellis search algorithm picks {ö„} as 

the survivor sequence over {an}. It follows from (4.37) that the event occurs if the metric 
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accumulated on the incorrect path is greater than the metric accumulated on the correct 

path i.e. 

£r(änÄ)> £r(a„.6n) (4.-17) 
71=0 71 = 0 

where {T(an,bn)} and {r(ä„.bn)} are branch metrics corresponding to the paths {an} and 

{ün} respectively, computed using (4.38). Note that the conditional decisions {an_/(6n)} 

and {an_[(bn)} which are fed back to compute the branch metrics, are taken from the paths 

corresponding to the sequences of states {bn} and {bn} respectively. Thus, an_i(bn) = an_i 

and än_;(6n) = än_/ and (4.47) can be written in matrix notation as 

2Re{öf (P-1 )kxk} - sjfRkQkak > 2Re{af (P-1 )kxk} - afP^a* (4.48) 

where Qj. = [a0,au.. .,ak_1]T, äk = [ä0,äi,.. .,äk_i]T and xk = [x(0),x(l),. ,.,x{k - 1)]T. 

The matrices (P~1)k, Rk and Qk are principal submatrices6 of dimension k of the matrices 

P_1, R and Q respectively given by (4.16), (4.17), (4.18) and (4.19). Defining ek = äk-ak 

as the error sequence and noting that RkQk = QkRk, (4.48) can also be expressed as 

2Re{ef (P"1)^} > egRkQkej< + 2Re{ef RkQ^}. (4.49) 

From (4.8), it follows that 

xk = PkxN(Sa + u) (4.50) 

where PkXN is the k x N matrix comprising the top k rows of the matrix P. Using (4.50), 

(4.49) can be written as 

2Re{ef(p-1)fcPfcxNw} > £RkQkek + 2Re{£RkQkak}-2Re{£(p-1)kPkxNSa} (4.51) 

which is the condition for the error event e : a^ is eliminated in favor of a^. + §j. (with aj. 

and ejt given, i.e. non-random). The error event e is associated with the error sequence §j.. 

The length of the error event is k — J symbols, not counting the last «7 components of ej. 

which must be zero as bk = bk according to (4.46). 

MLSE 

In the case of maximum likelihood sequence estimation, the memory order is J = Lv 

(Viterbi algorithm). Thus, we have ek-i = 0 for i - 1,2,.. .,LV. Using the fact that RkQk 

6The principal submatrix of dimension & of a square matrix A (with dimension > k) is obtained by 
erasing all but the first k rows and columns of A. 
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is a square banded matrix with L < Lv elements in the right band', we get 

e^RkQkU = ^-L.Sk-u.xkU (4.53) 

w here ek_Lv = [e0,ei,...,ek-Lv-i] and Sk-L„xk is a (k - Lv) x k matrix comprising the 

top k - Lv rows of Sk- Since (P~1)k is a banded matrix with // < Lv elements in the right 

band), the top k - Lv rows of (P~1)kPkxN are given by [h-Lv \Ok-LvxN+Lv-k] and we have 

e^(P-1)kPkxNSa = e^^Sk-L^k^ (4.54) 

Combining (4.52), (4.53) and (4.54) with (4.51), we see that the error event e occurs in an 

MLSE receiver if 

2Re{ef_LoT^_LJ > e^Sk-L^^. (4.55) 

Given the error sequence e^, the left hand side of (4.55) is a Gaussian random variable with 

mean 0 and variance 4N0eg_LvSk-Lvej;-Lv-  
Ttms, the probability of the error event e is 

given by 

Pr(£) = Q^y^^ÄXj (466) 

It follows from (4.46) and (4.56) that the first event error probability can be over-bounded 

using a union bound, as 
F™^M$k) (457) 

where E is the set of all error sequences e = e0, ei,..., e/_i (such that / > 0, e/_x ^ 0) with 

less than J consecutive zeros in the midst of the sequence, pe is the a priori probability of 

the error sequence e and 6(e) is known as the distance of the error sequence e and is given 

by 

6(e) = yJeHS{e = 
^ i=0 j=0 

Notice that the first event error probability given by (4.57) is independent of the pro- 

cessing filter P and the form of the branch metric used. It is the same as obtained by Forney 

[13] and Ungerboeck [40] for MLSE receivers with specific processing filter and branch met- 

ric combinations. Our result validates the fact that the Viterbi algorithm does in fact yield 

7The elements on the right hand side of (but not including) the diagonal. 
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maximum likelihood sequence estimates regardless of the form of the processing filter as 

long as the inverse processing filter P~x exists and the trellis is expanded by !f - I symbols 

if the number of anti-causal taps // of P~x is greater than the channel memory L. 

DFSE 

For a memory order J < L, the first term on the right hand side of (4.51) depends on the 

error sequence e^. only, while the other two terms depend, in addition, on the transmitted 

sequence a. These terms do not cancel for a general transversal processing filter P and 

thus represent "raw or untreated" interference. The error performance of a. DFSE receiver 

thus depends on the processing filter unlike the case of an MLSE receiver. Moreover, the 

error performance also depends on the branch metric formulation employed by the reduced 

trellis-search algorithm. This can be seen by noting that the two branch metric formulations: 

&k = Qk = Ff? and Rk - Ik,Qk = Sk result in different error distance and interference 

terms as Ff? Fk ^ Sk. Note that the asymptotic equivalence of the matrices S and FHF 

(for N large) assumed in Section 4.3 does not apply here, as error events are generally short, 

i.e. k < N. 

In view of the above discussion, it is desirable to have a processing filter plus branch 

metric combination which eliminates the problem of untreated interference and maximizes 

the error distance. We devise the notion of "unbiasedness" to describe such DFSE receivers 

whose error performance is not affected by untreated interference (or bias). Let E' be the 

set of all error sequences in the set E with J zeros appendid at the tail. 

Definition 4.6.1 A DFSE receiver is termed "unbiased7' if each error events (correspond- 

ing to an error sequence in E') is conditionally independent of the transmitted sequence a 

given the error sequence §j., for any memory order 0 < J < Lv. 

It can be expected that an unbiased DFSE receiver would have good error performance 

for any memory order. On the other hand, a biased DFSE receiver would be affected by 

untreated interference components and could thus exhibit an error floor. In order to obtain 

an unbiased DFSE receiver, one must find a processing filter that causes the cancelation 

of the interference terms in (4.51) for any memory order. It follows that such a processing 

filter P must satisfy the condition: 

(P'^kPkxNS = RkQk[h\OkxN.k]    \fl<k<N (4.59) 
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or equivalents (noting that RkQk = Q"R" for the cases in hand): 

{P-l)kPkxK = QHiQ-H)k*N    Vl<fc<Af (4.60) 

where the matrix {Q~H)kxN comprises the top k rows of the matrix Q~H. 

It follows from (4.51) and (4.59) that the probability of the error event s for an unbiased 

DFSE receiver is given by 

Pr(£) = Q ( #**"* ) . (4.61) 

The first event error probability for an unbiased DFSE receiver can then be overbounded 

as 

where S(e) is the distance of the error sequence e defined, in general, as 

6(e) £ fFRkQktL (4 63) 

y/eHRkQk(S-i)kRkQke 

where the subscript k denotes the length of the composite error sequence e. Note that the 

above definition of the error distance includes the effect of noise enhancement (the term in 

the denominator of (4.63)). 

A first event error analysis of the alternative DFSE receiver of Fig. 4.4 is similar to the 

analysis presented above and is given in Appendix A. 

4.6.2    Tree Search Algorithms 

Consider the generalized M-algorithm receiver of Fig. 4.5. Let {an} be the sequence of 

symbols transmitted. Let &(t) (» G {0,1,...,M.4 - 1}) be the MA paths extended at a 

time unit k > logAM, including the correct path ^(0) = o*. A first event error occurs 

at time 0 in the M-algorithm receiver if the tree search algorithm eliminates the path a*. 

It follows from (4.45) that the error event occurs if the metric accumulated on the correct 

path is less than the metric accumulated on at least M of the other extended paths, i.e. 

Mia,) < M(o,(0) (4-64) 
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for at least M values of i e I = {1,2. ....MA - 1}}.  Let  {a»(i)}^,zl he the sequence of 

states8 in the path of ak{i). Then, using (-4.45), (-1.6-1) can be written as 

k-i k-i 

^r(fl„(»),ffn(0)>X; 
n-0 n=0 
£r(a„(»),ffn(»))> £r(a„.an(0)). (4.651 

Defining e*(i) = 0^(1) - aj. as an error sequence and following the development of (4.51). 

we get equivalently 

2Re{ek(i)
H(P~1)kPkxNu}   >   e^{i)H'RkQkU{i) + 2Re{eJc(i)

HRkQlsak} 

-2Re{eJt(z)//(P-1)fcPfcxA'5a} (4.66) 

for at least M values of i £ 1. This is the condition for the error event e' : a* is eliminated 

in favor of M of the extended paths aj. + ^.(0 (with a* and ek(i) given, i e X). 

Notice that like the case of the DFSE receiver, the error performance of the general- 

ized M-algorithm receiver depends on the processing filter and is, in general, affected by 

untreated interference components. Thus, the concept of "unbiasedness" also applies to 

M-algorithm receivers. Specifically, we define a class of unbiased M-algorithm receivers as 

follows 

Definition 4.6.2 An M-algorithm receiver is termed "unbiased" if each error event e' (for 

each depth k) is conditionally independent of the transmitted sequence a given the error 

sequences (^(i) (i e 1). 

Clearly the processing filter P of an unbiased M-algorithm receiver must satisfy (4.60) as in 

the case of unbiased DFSE receivers. The probability of the error event e' for an unbiased 

M-algorithm receiver is, thus, given by 

Pr(c') = Pr (x(e*(t)) > e*(«)HÄfcQfce*(*'),   for M values of i € j) (4.67) 

where ^(e^i)) are jointly Gaussian random variables with mean zero and covariance 

E[X(e^(0)X*(ejt(i))] = AN^i)" RkQk(S-i)kRkQke+{j). 

4.7    Unbiased receivers 

In Appendix B, we show that the processing filters that satisfy the unbiasedness condi- 

tions of (4.60) and (A.4) (corresponding to the case where the front-end filter is matched 

The notion of state in a tree search algorithm is as defined in Section 4.5. 
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to the overall channel response and where it is matched to the transmit filter response 

respectively) are unique (within a scaling factor) and are given by 

P = Q~H (-4.68) 

and 

P = Q'~H (4.69) 

respectively. In the first case, the processing filter P that results in an unbiased receiver 

when used with a reduced trellis or tree search algorithm with branch metric formulation 

R - QH = FH, is the noise-whitening filter F~H, while for the formulation R = I and 

Q = 5, it is the zero-forcing filter 5_1. In the second case, the processing filter in the case of 

branch metric formulation R' = Q'H = F'H, is the appropriate noise-whitening filter F'~H, 

while for the formulation R! = I and Q' = *, it is the appropriate zero-forcing filter $_1. 

Note that the processing filters in both cases correspond to the autocorrelation spectrum 

of the front-end filter in the receiver. The processed statistics given by 

x = RHa + Q~Hu (4.70) 

in the first case, and 

x ' = R'HCa + Q'-Hy! (4-71) 

in the second case, depend on the past transmitted symbols only and not on any future 

transmitted symbols. Thus, the statistics fed to a reduced trellis or tree search algorithm 

must have causal dependence only, for unbiased operation. Note that it is also necessary to 

match a given processing filter with the proper branch metric of the reduced trellis or tree 

search algorithm in order to achieve unbiasedness. 

We considered two additive decompositions of the likelihood metric in each case of 

the front-end filter, which led to two different unbiased receivers Tbe two branch metric 

formulations correspond to the two decompositions of the front end filter autocorrelation 

matrix (S or $)- one actually being no decomposition and the other being the unique 

Cholesky decomposition. Note that there is no other decomposition of a positive definite 

and banded matrix of the form RQ (or equivalently RHQH), where the matrix R is upper- 

triangular and both matrices R and Q are banded. The matrix R is constrained to be 

upper-triangular to get a causal form for the additive metric. Both R and Q are constrained 
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to be banded in order for the branch metric to have finite complexity. Thus, our treatment 

of unbiased receivers is complete in this sense. 

In the case of an infinite length transmitted sequence, the processing filters described 

above have infinite impulse responses. In practice, these filters can be implemented by 

truncating the impulse response at a sufficient length. However, this leads to some bias 

(untreated interference) in the receiver. Thus, there is no truly unbiased DFSE or M- 

algorithm receiver for an infinite length transmitted sequence. An exception to this is the 

case of Nyquist pulse-shaping at the transmitter and transmit-filter matched-filtering at the 

receiver. No processing filter is required in this case for unbiased operation. 

4.7.1    Receivers with a noise-whitening filter 

One type of unbiased DFSE and M-algorithm receivers have a noise-whitening filter. 

Henceforth, they will be referred to as whitening filter DFSE (WF-DFSE) and whitening 

filter M-algorithm (WF-MA) receivers. For the case where the front-end filter is matched to 

the overall channel response with autocorrelation spectrum S (standard matched filtering), 

the noise-whitening filter is given by F~H. The branch metric for the WF-DFSE(S) and 

WF-MA(S) receivers9 is obtained by replacing P"1 = R - QH = FH in (4.38) and (4.22) 

respectively. An upper bound on the first event error probability of the WF-DFSE(S) 

receiver is given by (4.62), with the error distance obtained by substituting Rk = Q% = Ff? 

in (4.63) and noting that 

(iT1), = {F-^F-«)k = {F^)k{F-H)k = (Fk)-\Fk)-
a (4.72) 

where the second and third equalities follow from the following identity. 

If X and Y are N x N matrices and Y is upper-triangular (or X is lower-triangular), 

then 

(XY)k = XkYk (4.73) 

where (XY)k is the principal submatrix of dimension k < N of the matrix XY. 

The error distance is then given by 

%) = ||*k|| (4.74) 

For the case where the front-end filter is matched to the transmit filter response with 

autocorrelation spectrum $ (transmit matched filtering), the noise-whitening filter is given 
9Where 'S' stands for standard matched filtering. 
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by F'-H. The branch metric is obtained by replacing P~l = R'= Q'H = F'H in (4.4-1) and 

(4.35) respectively for the WF-DFSE(T)10 and WF-MA(T) receivers. The error distance 

for the WF-DFSE(T) receiver follows from (A.6) as 

6(e)=\\nCkS\\- (4-75) 

Note that the two expressions for the error distance of WF-DFSE receivers (4.74) and 

(4.75) differ from each other due to the different phase characteristic of the whitened channel 

in each case. In the first case, the whitened channel {/(n)} has minimum-phase while in 

the second case, the whitened channel {/'(n) * c(n)} has mixed phase, in general. We will 

see later that the error distance and hence the error probability is superior in the case of 

the minimum-phase channel. Note that the first event error probability expressions derived 

here are equivalent to the expression obtained in [8]. 

4.7.2    Receivers with a zero-forcing filter 

The other type of unbiased DFSE and M-algorithm receivers consist of a zero-forcing 

filter. Henceforth, they will be referred to as zero-forcing filter DFSE (ZF-DFSE) and zero- 

forcing filter M-algorithm (ZF-MA) receivers. For the case of standard matched filtering, the 

zero-forcing filter is given by 5"1. The branch metric for the ZF-DFSE(S) and ZF-MA(S) 

receivers is obtained by replacing P"1 = Q = S, R = I in (4.38) and (4.22) respectively. 

Substituting these values in (4.63) gives the error distance for the ZF-DFSE(S) receiver as 

6(e) =     .     e-HSke~ • (4-76) 
y/e»Sk(S-l)kSke 

For the case of transmit matched filtering, the zero-forcing filter is given by S"1. The branch 

metric is obtained by replacing P"1 = Q' = *, R' = I in (4.44) and (4.35), respectively 

for the ZF-DFSE(T) and ZF-MA(T) receivers. The error distance for the ZF-DFSE(T) 

receiver follows from (A.6) as 

6(e) = e-HC?**Cke- (4.77) 
<Je«CH$k{$-l)k$kCke 

Note that the zero-forcing filter *"x in the latter case does not null out inter-symbol in- 

terference entirely. It decollates only the part due to the autocorrelation of the front-end 

filter response while the part which is due to the dispersion caused by the medium response 

{c(n)} is left untouched. 
10 Where "F stands for transmit matched filtering. 
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4.8    Biased receivers 

Several biased receivers are possible. One example is a DFSE receiver considered in 

[37]. It comprises a front-end filter matched to the overall channel response followed by 

the noise-whitening filter P - F~H. The reduced trellis search algorithm uses tlie branch 

metric formulation R = /, Q = S. To see that the receiver is biased, note that F['Fk. j, Sk 

(k < TV). It follows from (4.51) that the error event s depends on the transmitted sequence 

a through (Sk - FfFk)^. 

Note that a transversal processing filter adds complexity to a receiver. The computa- 

tion of a noise-whitening or zero-forcing filter requires channel inversion and factorization 

operations. Moreover, the filter has to track the variation in the channel if the channel is 

time-varying. One solution to this problem is to omit the processing filter and pass the out- 

put of the matched filter directly to the trellis or tree search algorithm, resulting in a class 

of receivers which we refer to as matched filter receivers. Matched filter-receivers, however, 

are biased. In other words, their error performance is limited by untreated interference 

components. Some useful matched filter receivers are described in the following sections. 

4.8.1    Matched filter receivers 

An important type of matched filter DFSE (MF-DFSE) and matched filter M-algorithm 

(MF-MA) receivers have a front-end filter matched to the overall channel response followed 

by a reduced trellis or tree search algorithm with branch metric obtained by replacing 

P'1 = R = I, Q = S in (4.38) and (4.22) respectively. The MF-DFSE receiver of this type 

was proposed in [7,50]. The MF-MA receiver of this type was considered in [48,51]. An 

upper bound on the first event error probability of the MF-DFSE(S) receiver was derived 

in [19,20]. Using P~x = R = J, Q = S in (4.51), note that the error event e occurs in the 

MF-DFSE(S) receiver if 

2Re{<£uk] > gjfSke* - 2Re{£HSg_Jaie} (4.78) 

where äj. = [o^,.. .,a,k+L-j-i]T, f is the tail of the error sequence ek comprising the last 

L — J non-zero components of ek, given by11 

£= [ek_L,...,ek..j-1]T (4.79) 

"In (4.79), e, = 0 for i < 0. 
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s (4.80) 

and 5 is an L x L matrix given by 

s(L) ••• 5(2)        5(1) 

0 '•• : 

! ••• s(L)  s(L-l) 

0 ••• 0         s(L) 

It then follows that the first event error probability can be upperbounded using the union 

bound as 

PFEE < X) P<L
E

2. 
eeE' 

where 6(e) is the error distance given by 

Q 
*(e)-7(feg) 

2y/WQ 

(4.81) 

6(e) = y/eHSke 

and 7(e, a) is the untreated interference given by 

7(e,a) = 2Re{^5f_JoJt}/%). 

(4.82) 

(4.83) 

McLane investigated truncated-state Viterbi detectors (TSVD) with standard matched 

filters in [32]. The difference between the TSVD algorithm of [32] and the MF-DFSE 

algorithm is that the MF-DFSE algorithm uses conditional tentative decisions to cancel 

the tail of the channel response while the TSVD algorithm simply ignores it. The error 

bounds obtained by McLane indicate the presence of untreated interference. However, the 

untreated interference in his bounds arises due to ignoring the tail of the channel response 

in the TSVD algorithm. Such an interference term does not appear in the bounds for DFSE 

as it is canceled by means of tentative conditional decisions in the DFSE algorithm. The 

untreated interference component that appears in the DFSE bound of (4.81) is, however, 

absent in McLane's bounds. The cause of this latter untreated interference component can 

be intuitively explained as follows. The matched filter statistics at the input of a reduced 

trellis search algorithm depend on L past and L future transmitted symbols (cf. (4.5)). The 

reduced trellis search algorithm (with memory order J) selects survivor paths extending 

up to time n on the basis of the metric accumulated up to time n + J. This premature 

elimination of candidate paths does not account for the interference arising from the L- J 

future transmitted symbols.   Clearly, this type of untreated interference affects both the 
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DFSE and TSYD algorithms. Hence, the bounds in [32] should he corrected to include this 

interference component. 

A second type of matched filter receivers is obtained in the case where the front-end filter 

is matched to the transmit filer response. The reduced trellis and tree searcli algorithms 

of MF-DFSE(T) and MF-MA(T) receivers employ the branch metric given by (4.4-1) and 

(4.35) respectively with P_1 — R' = I', Q' = $. Substituting these values in (A.2), we see 

that an upper bound on the first event error probability of the MF-DFSE(T) receiver is 

given by (4.81), where the error distance 6(e) is given by 

6(e) = eHC? $kCke 

and the untreated interference 7(e, a) is given by 

7(e,a) = 2Re{tH(CLdXL-j)
H$Cäk}/6(e) 

(4.84) 

(4.85) 

where äj, = [ajt_Lc,.. .,at,...',a,k+Ld-i]
T and C and $ are Ld x L and Ld x Ld matrices 

respectively, given by 

C = 

c(Lc)  ••• c(l)   c(0)    0 

0    '■• 

0 

0 

0 0    c{Lc)  ••• c(l)  c(0) 

(4.86) 

$ = (4.87) 

<j>{-Ld) ••• <H-2) <f>{-\) 

0 •■• : 

i ••. 4>(-Ld) <K-Ld + i) 

0 •••       0 4>(-Ld) 

The matrix ÖLdxL-J comprises the first L — J columns of the matrix C. In the case of 

fractional sampling, the MF-DFSE(T) receiver corresponds to the fractional MLSE receiver 

of Section 3.5. 

Note that for a given error sequence e, the untreated interference 7(e,a) in (4.81) has 

zero mean in the case of i.i.d. transmitted symbols. The interference, thus, increases or 

decreases the error distance of the MF-DFSE receivers with equal probability. Due to 

the convexity of the Q(-) function, the error performance is, however, dominated by the 

50 



destructive effect of the untreated interference and is, thus, rather poor. Without giving 

an expression for the error probability of the MF-MA receivers, it can be noted that the 

MF-MA receivers also suffer from untreated interference. 

4.9    Truncated memory MLSE receivers 

Linear pre-filtering was proposed in [12,35] as a means to truncate the memory of the 

Viterbi algorithm in an MLSE receiver. In [12], the overall response of the channel/pre- 

filter combination is forced to a truncated and causal desired impulse response (DIR) of 

acceptably short span (say J symbols). Pre-filtering colors the noise in the output statistic. 

However, the Viterbi algorithm is used on the pre-filtered statistic as if the noise were white. 

An important difference between this approach and our generalized DFSE approach is that 

the receive filter in the case of DFSE is not specifically designed for a memory order. This 

allows one to vary the memory order of the trellis search algorithm without changing the 

receive filter. In the following, we look at the error performance of the pre-filtering method. 

Let x be the statistic obtained after matched filtering/noise-whitening, i.e. 

x-Fa + w (4.88) 

where w is a white Gaussian noise sequence with covariance E[wwH] — N0I. Let G be an 

N x N lower-triangular banded Toeplitz matrix (with band width J < L) representing the 

DIR and H be the corresponding pre-filter matrix, given by HF = G. The statistic at the 

output of the pre-filter is given by 

xp = Ga + wp (4.89) 

where wp — Hw is the filtered noise. 

Consider a path {än} in a truncated memory MLSE (TM-MLSE) receiver that diverges 

from the correct path {an} at time 0 and remerges with it at a later time k. A first event 

error occurs at time 0 if {än} is picked as a survivor path. The error event occurs if the 

metric accumulated on the incorrect path is greater than the metric on the correct path, 

i.e. 

-Ilzjb-Gfc&ll^-Haj-Gfcfifcll2. (4.90) 

Using (4.89), we get 

2Re{ef GJfwp} > \\GkSk\\* (4.91) 
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where Lk — Öx- ~ "A- is the error sequence. Note that H is a lower-triangular matrix. 

Therefore. Efu^tr^ ] = :V0//<,.///' and the probability of the error event s: the sequence nA. 

is eliminated in favor of the sequence a^ + ej., is given by 

Pr(f) = Q(^l) "-921 

where 6(e) is the distance of the error sequence e (we drop the subscript /:), given by 

\\Gke\\2 

y/eHGJfHkHJ?Gke 
6(e_)=    ,      ^ . (4.93) 

4.10    Symbol error probability 

Consider a path in the reduced-state trellis of a DFSE receiver that diverges from the 

correct path at time n\ and remerges with it at a later time n<i. Due to feedback incorporated 

in the reduced trellis search algorithm, the event that the correct path is eliminated in favor 

of the incorrect path (an error event) depends on previous error events. The effect of the 

error propagation is, however, small in DFSE receivers as compared to simple decision 

feedback equalizers (DFE). This is because the decisions fed back in DFSE are conditioned 

on the state of the reduced trellis unlike the decisions in DFE. Moreover, the effect of error 

propagation is small at medium to high signal-to-noise ratio (SNR). This was shown to be 

the case for WF-DFSE receivers in [8,9]. Assuming no error propagation (i.e. a separation 

of more than L — J correct decisions between error events), the probability that an error 

event occurs in a DFSE receiver can be upperbounded by the first event error probability 

[29]. The symbol error probability for unbiased DFSE receivers can then be upperbounded 

as [8,13] 

*.sJ>Wfc«i($j) (4-94) 

where w(e) is the number of symbol errors entailed by the error sequence e, 6(e) is the 

distance of the error sequence and p£ is the probability that a transmitted sequence can 

have e as an error sequence. For i.i.d. transmitted sequences and input alphabet A = 

{±1,±3,...,±(\A\-1)} (for \A\ even), we have 

^R^T^ (4-95) 

which reduces to 

Pe = 2"w<^ (4.96) 
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in the case of BPSK modulation. The error distance 6(e) is given by (4.74) and (4.75) 

for WF-DFSE receivers with the standard and transmit matched filters, respectively. The 

error distance for ZF-DFSE receivers given by (4.76) and (4.77). depends on the location 

and length of the error event. This is because the correlation in the noise samples given bv 

5_1 varies over the length of the data sequence. However, note that the noise correlation 

is constant in the middle of a long sequence (i.e. 5_1 is nearly Toeplitz except at the edges 

for N > L). In Appendix C, we obtain expressions for the error distance that assume the 

noise correlation to be constant. The error distance in the case of standard and transmit 

matched filtering is given by (C.5) and (C.6) respectively. The symbol error probability 

bound of (4.94) also holds for the truncated memory MLSE receiver of Section 4.9 with the 

error distance given by (4.93). In this case, it is a strict upper bound as there is no decision 

feedback and thus no error propagation. 

For moderate SNRs, the upper bound given by (4.94) is dominated by the term 

Q (^fe)   £   -Wit (4.97, 
—*-    min 

where E'min is the set of error sequences in E' that achieve the minimum distance (known 

as minimum distance sequences) 

0mtn = min%). (4.98) 
e€Ü£ 

The symbol error probability for MF-DFSE receivers can similarly be upperbounded as 

where the error distance 6(e) and the untreated interference 7(e,a) are given by (4.82) 

and (4.83) for the case of standard matched filtering and (4.84) and (4.85) for the case of 

transmit matched filtering respectively. Due to the presence of untreated interference, the 

upper bound in (4.99) is not dominated by the minimum distance error sequences only, 

unlike the bound for unbiased DFSE receivers. Higher distance error sequences should also 

be considered with worst case interference. 

4.11    Error distance 

The various DFSE receivers derived in the previous sections can be compared on the 

basis of their error distance. In the case of an unbiased DFSE receiver, the minimum error 
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distance squared per noise spectral density can be considered as its effective SNR [8]. For 

a given channel and memory order, the distance of a given error sequence depends on the 

type of the DFSE receiver. Specifically, it depends on the receive filter and the branch 

metric. In this section, we compare the error distance for various receivers. 

Let e = [e0,«!,..., ejt_i_j,0,...,0]r be an error sequence of length k belonging to the 

set E'j (the set E' of allowable error sequences for a DFSE receiver with memory order 

J < L). Let e+ = [eT,0,...,0]T (length l = k + L-J). Then, e+ € E'L, the set of allowable 

error sequences for an MLSE receiver. The distance of this sequence in the case of an MLSE 

receiver is given by 

S{e+) = 4Sle+ = eHSke (4.100) 

which is equal to the distance of the corresponding error sequence in the case of a MF-DFSE 

receiver with the standard matched filter. Let E'j be the set of all error sequences in E'j 

appended by L-J zeros (L > J). Note that E'j Q E'L, i.e. the upper bounds given by (4.94) 

and (4.99) for DFSE receivers are determined using only a subset of the error sequences 

considered for an MLSE receiver12. Thus, if the untreated interference in the case of MF- 

DFSE(S) could be removed ideally with the aid of a genie, the upper bound for the receiver 

would be lower than MLSE. In fact, the error rate performance of the genie-aided receiver 

is generally better than MLSE in moderate SNRs where error propagation is negligible. 

For the other DFSE receivers, we will show that the error distance is smaller, in general, 

compared to the MF-DFSE(S) receiver (or an MLSE receiver). 

4.11.1    WF-DFSE 

Consider the case of WF-DFSE(S) receiver. Note that 

e?£,e+ = £SSH = \\FeN\\2 = ||i=k+||2 = ll*rf + H*fll2 t4'101) 
12 The error sequences excluded have more than J - 1 consecutive zeros in the midst and hence cause a 

reduced trellis encoder with memory J to flush. 
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where e;V = [c+0 0]r (length .V), f is given by (-4.79) and v[/ is an L - J x L - J matrix 

given by 

r f(L)     f(J + D 

0      "•- : 

;   ••. f(D j(L-i) 

0     •••     0        f(L) 

The matrix $ is illustrated in Fig. 4.6.      The distance of a given error sequence is thus 

0 k-1 

* = (-4.10-, 

k-1 

/-l 
k-l-J l-l 

Figure 4.6: Illustration of \P within Fi. 

smaller for WF-DFSE(S) as compared to MF-DFSE(S). The loss in squared distance is 

given by 

ll^ll2. (4-103) 

Now consider the case of the WF-DFSE(T) receiver. Let 

v(i,j) 
v(i — j)  0 < i — j < L 

0 otherwise 
(4.104) 

be the coefficients of the lower-triangular Toepltiz matrix V = F'C.   Then, similar to 

(4.101), we can write 

4S,e+ = \\Flde+f = WHCkef + ||V£|| (4.105) 
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where <P is an L - J x L — 3 matrix given by 

v(L)   ■■■    ■ 

* = 

v(J + l) 

0 
(4.106) 

:      ■•.   v(L)  v(L- 1) 

0     •••     0 v(L) 

The loss in squared distance in this case is given by 

Irä2- (4-107) 

Note that the matrix F of the whitened channel coefficients {/(n)} (in the case of 

standard matched filtering), is invertible since F(z), the z-transform of {/(n)}, is minimum- 

phase (has all roots inside the unit circle). Similarly, F'(z), the z-transform of {/'(n)}, 

is minimum-phase. However, the z-transform C{z) of the medium response coefficients 

{c{n)} may be non-minimum phase. Therefore, V{z) = F'(z)C(z), the z-transform of the 

coefficients of the whitened channel {v(n)} (in the case of transmit matched filtering), is 

mixed-phase in general. The whitened channels in the two cases have the same magnitude 

response, as 

F*{z~x)F{z) = V*{z-l)V(z) = S(z) (4.108) 

where S(z) is the z-transform of the sampled channel autocorrelation function {s(n)}. Note 

that channels with identical magnitude response but different phase responses have different 

energy distribution among tap coefficients. The minimum-phase channel has most of its 

energy contained in the leading tap coefficients, while the maximum-phase channel (with all 

roots outside the unit circle) has most of its energy contained in the lagging tap coefficients. 

As a result, the coefficients of the matrix * (belonging to the minimum-phase channel F) 

have smaller magnitude, in general, than the coefficients of the matrix *. Thus, the loss in 

squared distance compared to MLSE in the case of standard and transmit matched filtering 

given by (4.103) and (4.107) respectively is smaller in the first case. 

4.11.2    ZF-DFSE 

Next, consider ZF-DFSE receivers. In Appendix C, we show that the error distance for 

the case of ZF-DFSE(S) can be written as 

eHSke eHSke 

y/e»Sk(S-l)kSke      y/e"Ske + iHS^_j(Si2)LSL-ji 
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where (S^L is a submatrix of the matrix 5'_I and is thus positive definite. Note that the 

second term in the denominator of the RHS of (-4.109) is greater than zero as the matrix 

S is full rank (since s(-L) ^ 0). Thus, the error distance for ZF-DFSE(S) is less than 

MF-DFSE(S). Similarly, it can be shown that the error distance for ZF-DFSE(T) is smaller 

than that for MF-DFSE(T). 

4.11.3    Optimum unbiased DFSE receivers 

In this section, we show that WF-DFSE receivers are optimum in the sense that they 

minimize the first event error probability of unbiased DFSE receivers. Equivalently, we 

show that WF-DFSE receivers maximize the distance of a given error sequence in the class 

of DFSE receivers that satisfy the unbiasedness condition, i.e. 

§HRkQke- < IIAdl (4-110) 
\JeHRkQk{S-x)kRkQke 

with equality only if Qk = Fk, where (£, Q) = (I, S) or (FH, F) and 

eHC%R'kQkCke 

Je"C»RkQ>k(*-i)kRkQkCke 
< \\nCke\\ (4.111) 

with equality only if Q'k = F'k, where (R',Q') = (J,$) or (F'H,F'). 

To prove Proposition (4.110), we note that 

eHRkQke  =  eH{Fk)
H{Fk)-

HRkQke 

<   \\Fke\\\\(Fk)-HRkQk4 

=   me\\y/eHQ%RF(S-i)kRkQke (4.112) 

where the inequality in (4.112) is the Schwartz inequality which becomes an equality only 

if Rk z= Qf = Ff?. The last equality in (4.112) follows from (4.72). Proposition (4.111) 

can be shown similarly. 

Comparing the error distance of the WF-DFSE receiver with the truncated memory 

MLSE receiver of Section 4.9 (with the same memory order), we note that 

eHG? Gke  =  eHG^HkFke 

<   \\H»Gke\\me\\ (4.113) 
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where 6'/.- = (IIF)k = H^Fk follows from (4.73) as // is a lower-triangular matrix and we 

again use the Schwartz inequality. Thus, we get 

«aaL_<iiM. (.1.11..) 
y/e"G%HkHFGke 

In conclusion, we see that the distance of a given error sequence for a DFSE receiver 

depends on the type of filtering and the branch metric. The distance for the MF-DFSE(S) 

receiver is the same as in the case of an MLSE receiver. For the unbiased DFSE receivers - 

WF-DFSE and ZF-DFSE, the distance is smaller. This is due to the fact that the standard 

matched filter collects all the energy of the pulse transmitted at a given time in the corre- 

sponding output sample (in other words, it maximizes the output SNR, given by \s(0)\2/N0). 

The noise-whitening filter spreads out the signal energy into L + l output samples in the 
L 

process of whitening noise (£ |/(i)|2 = l5(0)|2)- The linear zero-forcing filter decorrelates 
»=o 

all interfering signal components but enhances (and correlates) noise in the process. The 

reduced trellis-search algorithms that follow these niters recover part of the signal energy 

(or SNR) that is spread out but are unable to recover all of it. Thus, WF-DFSE and ZF- 

DFSE suffer from a loss of the effective SNR, while MF-DFSE(S) does not. Of course, the 

drawback with MF-DFSE is that the reduced trellis search algorithm is unable to resolve 

some anticausal interfering signal components. This problem is alleviated in BC-MF-DFSE 

where the untreated components are canceled using tentative decisions. If reliable tenta- 

tive decisions can be obtained, the BC-MF-DFSE receiver presents an advantage over the 

unbiased DFSE receivers in terms of SNR. 

The noise-whitening filter removes only the anti-causal signal components which is nec- 

essary for unbiasedness. The causal signal components forming the tail of the channel 

response are equalized using decision feedback which does not enhance noise. The zero- 

forcing filter on the other hand performs complete signal decorrelation. This leads to noise 

enhancement and a further loss of the error distance. Similarly, the use of pre-filtering 

to remove some of the causal signal components in a truncated memory MLSE receiver 

enhances noise. Thus, WF-DFSE has greater error distance than ZF-DFSE and truncated 

memory MLSE receivers with pre-filtering. Practically, error propagation slightly degrades 

DFSE performance at moderate SNRs. Error propagation, however, does not occur in a 

truncated memory MLSE receiver with pre-filtering as there is no decision feedback. 
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4.12     Bound evaluation 

In this section, we describe a generating function method to evaluate the symbol error 

probability bounds given in Section 4.10 for unbiased DFSE receivers. Note that a generat- 

ing function method has never been considered for the well-known WF-DFSE receiver. In 

[10] and [8], the minimum distance was used to approximate the symbol error probability. 

However, the approximation may not be very good depending on the system, even at high 

SNRs [39]. In [39], a stack algorithm was proposed to obtain a chosen number of the largest 

terms in the union upper bound of (4.94). It was stated in [39] that a generating function 

method can not be applied to the case of DFSE because unlike MLSE, branch distances in 

DFSE can not be uniquely determined from pairs of error states due to decision feedback 

incorporated in the branch metric calculation. We note that the problem with the approach 

in [39] is that the branch distance depends oni + 1 error symbols (where L is the channel 

memory) while the states in the*error state diagram of [39] represent J + 1 error symbols 

(where J < L is the memory order of DFSE). In the following, we show how an error state 

diagram used to obtain error distances in MLSE, can be modified in the case of DFSE. 

An error state diagram (ESD) in the case of DFSE enumerates the distance 6(e), the 

number of symbol errors w(e) and the a priori probability p(e) of all error sequences e in the 

set of allowable sequences E'. Each path through the ESD corresponds to an error sequence 

in E'. For WF-DFSE, ZF-DFSE and MF-DFSE, the branch distance (denned later for each 

case) depends oni + 1 error symbols identified uniquely by a pair of error states, where an 

error state is defined as the value of L consecutive error symbols: {ej_£, ej_£+i,..., ej-i}- 

Since, an error symbol can take on any of 2|.4| — 1 values (including zero), the diagram 

has (2|.4| — 1)L error states or nodes, as in MLSE [46]. The nodes are connected to each 

other through branches. Since an error sequence in the set E' can have no more than J — 1 

consecutive zeros in the middle of the sequence, the nodes and branches that correspond to 

J or more consecutive zeros in the middle of the error path are expurgated. The modified 

error state diagram is shown in Fig. 4.7 for the case of a binary symbol alphabet, channel 

memory L = 3 and memory order J — 1. The error states or nodes are ternary L-tuples 

that take values in {0,+2, —2}. The pairs of error states that are negative of each other 

have been combined, as in [46]. This is because the branch distances for such error states 

are identical, as we will see later. Note that with L = 3, there should be (33 — l)/2 = 13 
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XwI/2 

Figure 4.7: Error state diagram for DFSE (L = 3, J = 1). 

non-zero error state pairs in the ESD. However, the nodes ±0± and ±0^ do not appear 

in the ESD of Fig. 4.7. Moreover, the nodes 0±0, ±±0, i^O and ±00 have only one 

outgoing branch each. This is because the nodes and branches that correspond to a zero 

in the middle of the error path, have been eliminated because with «7 = 1, an allowable 

error sequences can not have any zeros in the middle of the sequence. The branches are 

labeled with the branch distance parameter A and the number of symbol errors entailed by 

the transition as the exponent of dummy variable /. A factor of 1/2 is used to account for 

the a-priori probability of error if the transition involves an error. 

For the case of WF-DFSE, the error distance (squared) 62(e) is given by 

k-l+L-J 

j=0 
(4.115) 

where k is the length of the error sequence e = {e0, ei, • • •, e^-i} € E'j and bj is the branch 
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Table -1.1: Branch distance parameters for WT-DFSE (L = 3../ = 1 

A0 = DW Ai = D"'[/(o)+/(i)]2 

A2 = Z)4[/(0)-/(1)]2 As^Z?^1)2 

A4 = £>4[/(0)+/(l)+/(2)]2 A5 = ^[/(l) + /(2)]2 

A6 = £>4[/(0)-/(l)-/(2)]2 
A7 = £)4[/(°)+/(1)-/(2)]2 

A8 = £>4[/(l)-/(2)]2 A9 = £>4[/(°)-/U)+/(2)]2 

A10 = £><I/(°)+/(i)+/(2)+/(3)]2 An = £>4I/(o)-/(i)-/(2)-/(3)]2 

A12 = JD4[/(0)-/(l)-/(2)+/(3)]2 A13 = I>4[/(0)+/(l)-/(2)-/(3)]2 

A« = D4[/(°)+/(1)-/(2)+/(3)]2 Ajs = £4[/(°)-/(i)+/(2)-/(3)]2 

A16 = JD4[/(0)+/(l)+/(2)-/(3)]2 
A17 = D4[/(°)-/(1)+/(2)+/(3)]2 

A18 = £)4[/(1)+/(2)+/(3,)]2 AX9 = D4[/(1)+/(2)-/(3)]2     - 

A20 = £><I/(i)-/(2)-/(3)]2 A21 = JD<I/(i)-/(2)+/(3)]2 

A22 = ^23 = -^24 = -^25 = 1 

distance given by 13 

£/(*>;-,)    J = 0,1,...,*-! 

0 otherwise 

(4.116) 

Note that the segment of an error path e between the node {ejt_£,,...,efc_i_j,0,. ..,0} 

(ek-\-j ^ 0) and the all-zeros node corresponds to the tail of the error sequence f. Note 

from (4.116) that the branches within this segment of an error path (which we refer to as 

tail branches) have distance zero. This is in accordance with (4.101) and (4.105), where the 

loss in squared distance (compared to MLSE) as given by ||*f ||2 and ||*£||2, respectively, 

occurs on the tail branches. 

Table 4.1 lists the branch distance parameters A,- for Fig. 4.7 for the case of WF-DFSE 

(also see footnote 13). The branch distance appears as the exponent of a dummy variable 

D. Let T(D,I) be the generating function for the error paths for WF-DFSE, found by 

solving the state equations in the ESD of Fig. 4.7 simultaneously. The generating function 

In the case of transmit matched filtering, /(«) should be replaced by v(i). 
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can be expanded in a series as 

§JT(D.I: = Y,K,DS3W (-1.11: 
7=1 / 

where A'; is the number of error path pairs (negative of each other) with distance <!>(/). per 

the number of symbol errors and the number of the corresponding input sequences. Then, 

the symbol error probability bound of (4.94) for WF-DFSE can be computed as14 

Ps<  Y,2NlDS2(1) (4.118) 
D*=Q(y/x/2N0) 

In the case of ZF-DFSE(S), the squared error distance is given by 62(e) = b2Jbd, where 

k-l+L-J 
bn 

i=o 

is the numerator distance and k-l+L-J 

bd=     Yl ' bd<i 
J=0 

(4.119) 

(4.120) 

is the denominator distance, and bnj and bdj are the corresponding branch distances which 

follow from (C.5) as 

(4.121) bnJ = Re U (s(0)ej + 2 £ s(i)ej.tj j 

bdj = i 

bn,j j = 0,l,...,*-l 

(4.122) iHSS-jS'L-jSL-ji 3 = k 

0 otherwise 

Note that the numerator and denominator branch distances differ only at the tail branches 

according to (C.5). 

Table 4.2 lists the branch distance parameters At- for Fig. 4.7 in the case of ZF-DFSE(S). 

Dummy variables Dx and D2 are used to enumerate the numerator distance and the de- 

nominator distance, respectively. Let T(DX,D2,I) be the generating function for the error 

paths in this case, which can be expanded in a series as 

±T(D1,D2,I) = YJMiD\n(l)D 
i=i       , 

,M0nM')# (4.123) 

where Mt is the number of error path pairs with numerator distance &„(/) and denominator 

distance bd(l), per the number of symbol errors and the number of the corresponding input 

"Note that for real symbol alphabet, the noise b real with power spectral density N0/2. 
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Table 4.2: Branch distance parameters for ZF-DFSE(S) (L — 3, J — 1) 

At- = D\KiD?u 

Ax,0 = 5(0) Au = 5(0)+ 25(1) 

Ai,2 = 5(0) - 2*(1) Al,4 = 5(0) + 25(1) + 25(2) 

Al,6 = 5(0) - 25(1) - 25(2) Al,7*= 5(0) + 25(1) - 25(2) 

Al,9 = 5(0) - 25(1) + 25(2) Ai.io = 5(0) + 25(1) + 25(2) + 25(3) 

Ai.ii = 5(0) - 25(1) - 25(2) - 2s(3) Ai,i2 = 5(0) - 25(1) - 25(2) + 25(3) 

Ai,i3 = 5(0) + 25(1) - 25(2) - 25(3) Ai,i4 = 5(0) + 25(1) - 25(2) + 25(3) 

Ai,i5 = 5(0) - 25(1) + 2s(2) - 25(3) Ai,i6 = 5(0) + 25(1) + 25(2) - 25(3) 

Ai,i7 = 5(0) - 25(1) + 25(2) + 25(3) Al,3 = Ai,5 = Ai,8 = Ai)i8-25 = 0 

A2,t = Ai,,- for t = 0,1,..., 21,25 

A2,22 = (5(2) + 5(3))[5'(0)(5(2) + 5(3)) + 25'(1)5(3)] + 5'(0)5(3)2 

A2,23 = 5(2)[5'(0)5(2) + 25'(1)5(3)] + 5'(0)5(3)2 

A2,24 = (5(2) - 5(3))[5'(0)(5(2) - 5(3)) + 25'(1)5(3)] + 5'(0)5(3)2 
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Figure 4.8: BER performance of various receivers in Example 1. 

sequences.   Then, the symbol error probability bound of (4.94) for ZF-DFSE(S) can be 

computed as 

Ps< ^22MiD\n{l)Db
2
d{l) (4.124) 

DiB$=Q(y/*?/tNov) 

A similar approach can be applied to evaluate the symbol error probability bound for 

ZF-DFSE(T). A generating function method for MF-DFSE(S) was described in [20]. 

4.13    Performance results 

In this section, we compare the performance of the various receivers described in this 

chapter via simulation and analysis. We consider BPSK modulation and single-user static 

time-dispersive AWGN channels. We consider the cases of a symbol-spaced channel model 

(symbol-rate sampling) and a half symbol-spaced channel model (fractional sampling). The 

receiver is assumed to have perfect estimates of the symbol timing and the impulse response 

of the channel. Each simulation was run for a count of 600 errors. 

The first example is taken from [39]. The overall channel response is given by symbol- 
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spaced tap coefficients'0 / = (0.6335.0.5-456.0.1-179.0.3167). The channel has memory 

L — 3 and is minimum-phase. Nyquist pulse-shaping is assumed. Fig. -1.8 shows the 

bit-error rate (BER) performance of various receivers for the channel in Example 1 with 

standard matched filtering. The memory order for the DFSE receivers is set to J — 1. With 

memory order one, the minimum distance in the DFSE receivers is achieved by the error 

sequences ±(2, -2,0). For the MF-DFSE, WF-DFSE and ZF-DFSE receivers, the minimum 

distance as given by (4.82), (4.74) and (C.5) respectively, equals 0.7322, 0.6470 and 0.5936 

respectively16. The minimum distance loss for WF-DFSE as compared to MLSE is about 

1 dB while that for ZF-DFSE, it is 1.8 dB. Fig. 4.8 shows the upper bound (UB) on the 

symbol error probability given by (4.94) and the minimum distance bound (MB) given by 

(4.97) for WF-DFSE and ZF-DFSE. Note that the bounds were obtained assuming absence 

of error propagation. The simulated BER is marginally higher than the upper bound for 

both receivers. In the simulations, final decisions were obtained at a lag of 30 symbols. The 

minimum distance bound converges to the upper bound at high SNR as minimum distance 

sequences dominate the performance. 

Also shown in Fig. 4.8 is the simulated performance of an optimum two-tap TM-MLSE 

receiver with desired impulse response (0.7071,0.7071) taken from [12]. Note that the WF- 

DFSE receiver performs better than the ZF-DFSE and TM-MLSE receivers at all SNRs 

as discussed in Section 4.11.3. Although the zero-forcing filter in the case of ZF-DFSE, 

performs more signal decorrelation (which results in noise enhancement) than the prefilter 

of TM-MLSE, ZF-DFSE performs better than TM-MLSE in this example. This is because, 

unlike the case of TM-MLSE, the trellis search algorithm in the case of ZF-DFSE takes into 

account the correlation in the noise samples and is thus able to recover some of the lost 

signal energy. 

The MF-DFSE receiver achieves the maximum error distance equal to that of the MLSE 

receiver. However, it performs quite poorly due to the presence of untreated interference 

components. Also shown in Fig. 4.8 is a biased WF-DFSE receiver with the configuration 

P~l = FH,Q = S,R = I, considered in [37]. Again the effect of untreated interference is 

evident. The untreated interference arises due to a mismatch between the processing filter 

and the branch metric as discussed in Section 4.8. 

"Normalized so that £ l/(«')|2 = 1- 
i=0 

16 After dividing by two. 
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Figure 4.9: BER performance of various receivers in Example 1. 

Fig. 4.9 shows the simulated BER performance of the WF-MA, ZF-MA and MF-MA 

receivers for the channel in Example 1. The number of paths in the M-algorithm receivers 

is set to M = 2. The WF-MA receiver obtains the best performance. The MF-MA re- 

ceiver exhibits a (high) error floor like the MF-DFSE and the biased WF-DFSE receivers, 

all of which belong to the class of biased receivers. Fig. 4.9 also shows the BER perfor- 

mance of WF-DFSE(T) receivers on mixed-phase channels with symbol-spaced medium 

responses c = (0.4930,0.6745,0.3693,0.4070) (#1) and c = (0.4070,0.3693,0.6745,0.4930) 

(#2). The channels have the same magnitude response as the channel in Example 1, which 

is minimum-phase. Note that the performance deteriorates as the channel phase increases. 

The deterioration in performance is due to two factors: the increase in the distance loss with 

the channel phase as discussed in Section 4.11 and the increase in error propagation. The 

latter effect is not captured in the upper bound, so the bound diverges as error propagation 

becomes significant. The loss in the minimum distance for mixed phase channels 1 and 2 

as compared to MLSE is 1.6 dB and 3.1 dB as given by (4.103) and (4.107) respectively. 

For our second example, the medium response is given by half-symbol spaced tap co- 

efficients c = (0.6335,0.5456,0.4479,0.3167) (same as the minimum-phase channel of Ex- 
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ample 1 but with fractional spacing). The medium response memory is Lc = 3. We 

consider two different transmit filters specified by the sampled autocorrelation function o = 

(0.045,0.0.0.4053,1.0,0.4053,0.0,0.0-45) (Tl) and <f> = (0.33,0.33.0.33,1.0,0.33.0.33.0.33) 

(T'2). The first one is a Nyquist-1 pulse (truncated to seven half-symbol samples) taken 

from [4, (5.5)] while the second one is arbitrarily chosen. The transmit filter memory is 

Ld = 3. The overall channel memory is thus L = (Lc + Lj)/2 — 3. The memory order is 

chosen as J = 1 for the DFSE receivers. 

Fig. 4.10 shows the BER performance of various receivers for the two transmit filters 

(Tl and T2) with transmit matched filtering. In the case of Tl, the WF-DFSE receiver 

achieves close to MLSE performance while the performance of MF-DFSE is less than a dB 

worse. ZF-DFSE is not shown for the case of Tl as its BER is very close to WF-DFSE at all 

SNRs. Note that the zero-forcing filter in ZF-DFSE(T) decorrelates only the transmit filter 

response, unlike ZF-DFSE(S) where the zero-forcing filter decorrelates the overall channel 

response. For the case of T2, we show upper bounds for WF-DFSE and ZF-DFSE which are 

marginally lower than the simulated results due to error propagation. Note that WF-DFSE 

performs better than ZF-DFSE at all SNRs as in Example 1. MF-DFSE in the case of T2 

is much worse than MLSE as the sampled correlations in the case of T2 are more severe 

than Tl. 

4.14    Conclusions 

We have presented a unified analysis of DFSE and M-algorithm receivers for channels 

with finite memory that examines the role of the receive filter and the branch metric. The 

analysis indicates that the error performance of certain receivers (called biased receivers) is 

affected by untreated interference components (bias) which arise due to a mismatch between 

the receive filter and the branch metric. We have shown that an unbiased receiver consists 

of a front-end filter (matched to the overall channel response or the transmit filter response) 

followed by the appropriate noise-whitening or zero-forcing filter and a reduced trellis or tree 

search algorithm. We have shown that the DFSE receivers with the noise-whitening filter 

(and the proper branch metric) are optimum among unbiased DFSE and truncated memory 

MLSE receivers (with pre-fütering) in the sense that they maximize the error distance. We 

have obtained novel receiver structures which employ transmit matched filtering and are 
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Figure 4.10: BER performance of various receivers in Example 2. 

thus suitable for adaptive channel estimation in the presence of excess signal bandwidth. We 

have obtained upper bounds on the symbol error probability of the various DFSE receivers 

and described a generating function approach to evaluate the bounds. Simulation and 

analytical results were presented for the various receivers using a symbol-spaced channel 

model and a fractionally-spaced channel model. The bounds were found to be tight in each 

case. 
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CHAPTER 5 

Bias-compensated matched-filter receivers 

5.1    Introduction 

In Chapter 4, we considered decision feedback sequence estimation (DFSE) and M- 

algorithm (MA) receivers that operate on matched filter statistics (MF-DFSE and'MF- 

MA). These receivers are simple in that they do not require an additional processing filter 

like a noise-whitening or zero-forcing filter. Such a filter generally involves channel in- 

version and/or factorization operations which are not feasible in the case of time-varying, 

cyclo-stationary and bidirectional channels, as well as channels with deep spectral nulls. 

Applications that particularly involve such channels include multiuser detection for DS- 

CDMA systems, bidirectional equalization for the GSM system and fractional equalization 

for narrowband systems with excess signal bandwidth. 

We showed in Chapter 4 that for each case of matched filtering - front-end filter matched 

to the overall channel response (standard) or transmit filter response (transmit), the MF- 

DFSE receivers have greater error distance than the corresponding whitening filter DFSE 

and zero-forcing filter DFSE receivers. In fact, the MF-DFSE receiver with the standard 

matched filter (MF-DFSE(S)) achieves the same error distance as an MLSE receiver. How- 

ever, the high error distance of MF-DFSE receivers does not translate into good error-rate 

performance. This is because the MF-DFSE and MF-MA receivers belong to the class of 

biased receivers whose error-rate performance is affected by untreated interference compo- 

nents (bias). The bias, in fact, dominates the error-rate performance of these receivers as 

we saw in simulation examples given in Chapter 4. 

The interference components that constitute the bias for the various matched filter 
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receivers were identified in Chapter -1 using an event error analysis. It was found that the 

interference arises due to a few anti-causal transmitted symbols. Thus, an intuitive solution 

to the problem of bias is to cancel it by means of tentative decision feedback. With reliable 

tentative decisions, the bias can be compensated effectively. As a result, the error-rate 

performance is no longer dominated by untreated interference components and is improved 

significantly for most channels of interest. A bias-compensated MF-DFSE (BC-MF-DFSE) 

receiver was proposed in [20]J for the case of standard matched filtering. In this chapter, 

we describe this receiver and obtain a similar receiver for the case of transmit matched 

filtering. We also discuss an extension of this approach to the case of M-algorithm. 

Tentative decisions needed for bias compensation can be obtained by employing a con- 

ventional symbol-by-symbol decision device. In a multistage scheme, the decisions obtained 

in the first stage can also be used to cancel bias in the next stage. On channels with severe 

intersymbol interference (ISI) or multiple-access interference (MAI), it is not possible to 

obtain reliable decisions by means of symbol-by-symbol detection. However, by using a 

minimum mean square error (MMSE) estimator (an optimal symbol-by-symbol soft deci- 

sion), one can always reduce the mean square error after bias compensation no matter how 

severe the interference. In practice, we find that a MF-DFSE receiver with soft bias com- 

pensation (SBC-MF-DFSE) provides a significant gain over MF-DFSE for most channels of 

interest without much added complexity. 

We analyze the performance of the MF-DFSE receiver for the case of standard matched 

filtering without and with bias compensation using hard as well as soft tentative decisions. 

In the case of hard tentative decisions, we obtain approximate semi-analytic upper bounds 

on the error probability by assuming independence between the main and tentative decision 

errors. In the case of soft linear tentative decisions, we apply a Chebyshev type technique 

to upper-bound the error probability in the presence of residual interference. We outline 

a generating function method to evaluate union bounds on the error probability of the 

various receivers. The bounds are relatively simple to compute when the memory order of 

the DFSE receiver and the channel memory is small. For channels with large memory, we 

use monte carlo simulations to compare the performance of the various receivers. 

The chapter is organized as follows. In Sections 5.2 and 5.3, we describe the BC-MF- 

DFSE receiver for the case of standard (S) and transmit (T) matched filtering respectively. 

'The algorithm is referred to as modified unwhitened DFSE (MUDFSE) in [20]. 
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In Section 5.4. we briefly discuss bias compensation for matched-filter M-algorithm. In 

Section 5.5, we analyze the BC-MF-DFSE(S) receiver. In Section 5.6. we describe bias 

compensation using soft decisions and obtain various estimators. We analyze the SBC-MF- 

DFSE algorithm with linear soft decisions in Section 5.7. Simple Chebyshev type bounds 

for MF-DFSE and SBC-MF-DFSE are described in Section 5.8. In Section 5.9, we describe 

a generating function approach to evaluate the various bounds. The performance of the 

various receivers is compared via simulation and analysis in Section 5.10, where we give 

examples of equalization for ISI channels and multiuser detection for DS-CDMA channels. 

5.2    The BC-MF-DFSE(S) receiver 

The receiver consists of a front-end filter, which is matched to the overall channel im- 

pulse response, followed by a reduced trellis search algorithm. The trellis search algorithm 

computes path metrics as in MF-DFSE(S) i.e. using (4.37) and (4.38) with the formulation 

P-1 = R = /, Q = S. Conditional decisions are made (and the corresponding survivor 

paths are chosen) using the modified rule: 

ctn-j(ßn) = arg max [M(ßn) + T(an, ßn) - bias(/?n)], (5.1) 

where M{ßn) and T(an,ßn) are the accumulated metric and the branch metric of MF- 

DFSE(S) respectively and the bias term is given by 

bias(/?n) = 2Re {/£•?£_ jln+1} (5.2) 

where fj, = [dn_£,+i (/?„),..., an-j-i(ßn), <*n-j]T are the L — J most recent symbols in the 

survivor path associated with state ßn, SL-J is the principal submatrix of dimension L — J 

of the matrix S given by (4.80) and ö„+1 = [<xn+i, ■ • -,än+L-j]T are tentative decisions on 

L — J future symbols obtained using conventional matched filter detection. In the case of 

antipodal transmitted symbols, the tentative decisions are obtained as 

än = sign(zn). (5.3) 

The algorithm is delayed by L — J symbols as the statistic up to time n + L — J is needed 

in the nth step to obtain tentative decisions. Note that the bias term follows from the 

expression for the untreated interference given by (4.83). The bias is used for survivor 

path selection only and does not contribute to the accumulated path metric.   The bias 
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in (5.2) depends on the symbol an_j (which is falling out of the state) and the symbols 

ün_L+i, •••,a,e_j-_i for which conditional decisions, taken from the survivor path history 

of state /3n, are used. The bias can be simplified to include the leading term only, which 

depends on ctn_j, as follows: 

bias(/?n) % bias(an_j) = Re I 2a~ri_J   ^   s{-i)än-J+t > . (5.4) 
[ i=J+i ) 

Note that the approximate bias is independent of the state. It does not add significantly 

to the computational load and storage requirement of the MF-DFSE algorithm which is on 

the order of (K — J)\A\J, where K is the decision lag. This reduced-computation form of 

the algorithm was first proposed in [17]. 

5.2.1    Multistage BC-MF-DFSE(S) 

The above algorithms can be run in a multistage configuration where decisions obtained 

at the output of the first stage are fed back to compute the bias in the second stage and so 

on, i.e. 

(än)i = sign(*n) and (än); = (ä„),-_i,   i > 1 

where {(än),} are decisions obtained from the ith stage at lag K{ (K, > L). Note that the 

decisions {(ön)i} are likely to be much more reliable than the tentative decisions {(ön)i). 

The complexity and delay of an M-stage scheme is given by YAL\{K{—J,)MJi and £££i Ä',+ 

L — J\ respectively. 

5.3    The BC-MF-DFSE(T) receiver 

A bias-compensated MF-DFSE receiver can also be obtained for the case of transmit 

matched filtering (BC-MF-DFSE(T)). In this case, the algorithm computes path metrics as 

in MF-DFSE(T) using (4.41). Conditional decisions are made using the modified rule: 

&n-Aßn) = argmax[A4'(/?„) + T'K,/?„) - W(/?n)] (5.5) 

where M\ßn) and T'(an,ßn) are the accumulated metric and the branch metric of MF- 

DFSE(T), respectively, and the bias term is given by 

bias'OSn) = 2Re {^(CLdXL.j)
H^Cg/n+1} (5.6) 
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where //  = [ifn_L+i..... T]'n_J_l, '?„_./]T are the L - J most recent symbols in the survivor 

patli associated with state ßn and ö'n+1 = {ifn_ic+] -7/n-"n+i ü'n+Ld]T. where {o'n} 

are tentative decisions obtained as a'n  — sign(^'J, in the case of antipodal transmitted 

symbols. The bias term follows from (4.85). 

5.4 Bias compensation for M-algorithm 

Note that a bias-compensated MF-MA can also be derived on the same principle as 

described above for BC-MF-DFSE i.e. using tentative decisions to cancel untreated inter- 

ference components. The untreated interference in the case of MF-MA (with the standard 

matched filter) follows from (4.66) as 2Re{Z(i)HSHak}/6(e(i)), where £(») = [efc_L(i),..., 

ek-i(i)]T is the tail of the error sequence e(i) corresponding to the ith contender path and 

hj. = [ak,.. .,ak+L-i]T- The interference can be canceled by choosing survivor paths in the 

M-algorithm on the basis of the accumulated metric minus a bias term, computed using 

tentative decisions. Note that the bias term in this case depends on the last L symbols 

of the survivor path rather than the last L — J, as in the case of BC-MF-DFSE. This is 

because unlike DFSE, the M-algorithm is a tree search algorithm where contender paths 

are not constrained to merge. Since contender paths in DFSE always agree on the J most 

recent symbols, the bias term does not depend on them. However, this is not the case with 

the M-algorithm. Consequently, bias compensation requires more computation for MF-MA 

as compared to MF-DFSE. Moreover, as the number of interference components that need 

to be canceled is more in the case of MF-MA, the residual interference arising from tentative 

decision errors is more significant in the case of MF-MA. Thus, bias compensation does not 

look very attractive for MF-MA. 

5.5 Analysis of BC-MF-DFSE(S) 

Let {an} be the sequence of symbols transmitted and {bn} be the sequence of states 

in the path of {an} in the reduced trellis of the BC-MF-DFSE(S) receiver (with memory 

order «/). Let {än} be a hypothetical sequence of symbols and {&„} be the corresponding 

sequence of states in the reduced trellis that diverges from the correct sequence of states at 

time unit 0 and re-merges with it at a later time (say k). A first event error occurs at time 

0 if the reduced trellis search algorithm picks {än} as the survivor sequence over {an}- It 
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follows from (5.1) that the error event occurs if 

k-1 _ _ k-\ 

J2 r(ä„Ä) - bias(6A-_!) > 53 r(fl„.6„) - bias(6A_i) (5.7) 
n=0 n=0 

where the bias term bias(-) is given by (5.2). Using (4.78) and (5.2). we see that the error 

event occurs if 

2Re{<£u}:}>el*Skek + 2Re{ZHStjU} (5.8) 

where e^ = äj. - a* is the error sequence with the tail f = (ejt_£,,.. .,ek-j-i)H and tk = 

g^ - g^ are tentative decision errors in bias cancellation. To simplify analysis, we assume 

here that tentative decision errors are independent of main decision errors. This is not true 

in general because noise samples affecting the sampled statistic, obtained at the output of 

the matched filter, are correlated. However, independence can be assumed if the sampled 

channel correlations are small. Then, the probability of the error event e: the sequence aj, 

is eliminated in favor of the sequence a* + ej. (for given g$ and e^), is approximated as 

,eJ?Skek + 2Re{iHS»_jt} 
Pi(e) « Et Q (5.9) 

where the expectation is taken over all possible values of the tentative decision error vector 

t having L — J components. It follows that the first event error probability of the BC-MF- 

DFSE(S) receiver can be approximately upper-bounded as 

where E' is the set of all error sequences e = eo, ci,..., c/_i, 0..., 0 (of length / + J, I > 0, 

e/_i ^ 0) with less than J consecutive zeros in the middle of the sequence and the last L 

components2 equal to (fr, 0,..., 0). The quantity 6(e) is the distance of an error sequence 

eeE'of length A;, given by 

6(e) = y/eJsTe, (5.11) 

Pe is the probability that a transmitted sequence can have e as an error sequence and 7(e, t) 

is the residual interference arising from tentative decision feedback, given by 

7(e,£) = 2Re{iHS?_jt}/6(e). (5.12) 

2e; = 0, for i < 0. 
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The residual interference can be viewed as a normalized projection of the tentative decision 

error vector I onto the main decision error vector (_ as determined by the sampled channel 

autocorrelation spectrum S. The symbol error probability can be approximately upper- 

bounded using the union bound as 

**?>^(*w9 (5.13) 
e€E' 

where w(e) is the number of symbol errors entailed by the error sequence e. As discussed 

in Section 4.10, the above bound does not include the effect of error propagation. 

In Appendix D, we derive expressions for the probability Pr(£) for a two-stage BC- 

MF-DFSE receiver, with and without assuming independence between tentative and main 

decision errors. 

5.5.1    Genie-aided MF-DFSE 

Assume that perfect information is provided by a genie on the future inputs needed to 

compute the bias in BC-MF-DFSE i.e. tk = 0 w.p.l. The symbol error probability in this 

case is given by 

Note that the above expression for the symbol error probability of genie-aided MF-DFSE 

(GA-MF-DFSE) is the same as in the case of MLSE. The difference is that the ensemble 

average is taken over fewer error sequences for GA-MF-DFSE than for MLSE. The set E' 

does not contain error sequences with more than J — 1 but less than L consecutive zeros in 

the middle. However, these sequences are included in the case of MLSE. Thus, the upper- 

bound on the symbol probability of GA-MF-DFSE given by (5.14) is lower than MLSE. 

With the memory order J chosen as zero, all error sequences have length k = 1 symbol. 

This implies that the error distance squared is given by eHSke = |e|2s(0). In other words, 

zero-th order GA-MF-DFSE achieves the performance of the ISI-free channel. This makes 

sense since we assumed absence of error propagation from previous error events (by limiting 

ourself to first error events only) which accounts for all past interference in the case of zero 

memory order. In reality, zero-th order GA-MF-DFSE approaches ISI-free performance 

asymptotically at high signal-to-noise ratio for channels where the eye is not entirely closed, 

as error propagation becomes negligible. 
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5.6    Soft-input BC-MF-DFSE receivers 

Instead of using hard tentative decisions to cancel bias in the BC-MF-DFSE receivers, 

soft tentative decisions can be employed to reduce the mean square error in the bias com- 

pensated output. Consider a memoryless AWGN channel, i.e. 

Zn =  s/Ebd-n +Wn (5.15) 

where {wn} is an independent and identically distributed (i.i.d.) Gaussian random pro- 

cess with mean zero and variance a\ and an € {±1}- An optimum soft decision än that 

minimizes the mean square error 

MSE = E[(an - an)2} (5.16) 

is given by [15] 

än = tanfc(zn\/jEk/<7JL). (5-17) 

5.6.1    Optimum soft decision 

Given the standard matched filter statistic zn (4.4), the (one-shot) minimum mean 

square error (MMSE) estimator of an is given by [27] 

an = E[an|*n]. (5.18) 

For a channel with memory as in (4.4), the above estimator does not turn out to be a simple 

function of the statistic as in (5.17). A simplified estimator can be obtained by invoking the 

central limit theorem [27] to approximate the sum of the post and pre-cursor interference 

components as Gaussian. For i.i.d. equiprobable and antipodal symbols an, assuming that 

J^i-40 s(i)on-i is a Gaussian random variable with mean zero and variance J2ijto K*)l2> ^e 

following estimator is obtained3 

The above estimator replaces the hard decision of (5.3) in a Soft-input BC-MF-DFSE(S) 

(SBC-MF-DFSE(S)) receiver. 

3Note that for real symbol alphabet, the noise is real with spectral density No/2 instead of Wo- 
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5.6.2     Optimum linear soft decision 

Given the statistic zn (AA), we determine the (one-shot) linear minimum mean square 

error (MMSE) estimator of G„, i.e. we find ön as a linear function of zn such that the mean 

square error given by (5.16) is minimized. Assuming i.i.d., equiprobable antipodal symbols 

an, we get the linear MMSE estimator as 

än = — (5.20) 
X 

where x 1S a normalization factor, given by 

The mean square error of this estimator is given by 

MSE = 1 - ^ (5.22) 

which is always less than 1. Thus, the estimator guarantees that the mean square error is 

reduced at the output of the estimator no matter how severe the interference components. 

Note that the MMSE estimator of (5.19) is obtained by using a simpUfying assumption, 

which may not be accurate especially for small channel memory L. However, the linear 

MMSE estimator of (5.20) is a true optimum estimator. 

5.7    Analysis of SBC-MF-DFSE(S) 

In this section, we examine the error performance of a SBC-MF-DFSE(S) receiver that 

employs the linear optimum soft decisions of (5.20) to cancel bias in the case of real antipodal 

signals. Following the development of (5.8), we see that a first event error, corresponding 

to the error sequence ek, occurs at time 0 in a SBC-MF-DFSE(S) receiver if 

2eJ^ > Äejt + 2ZTSZ_j(äk -a*) (5.23) 

where a* = (ä^,.. .,äk+L-J-i)T are soft tentative decisions given by (5.20). Substituting 

(4.4) and (5.20) in (5.23), we get 

2ef «* - 2fSl_jUk/x > dSkU + 2?Sl_jSaklx (5.24) 

77 



where äj. = (ak_L. <u_L+i- • • • ,dk+2L-J-\ )T, iU- = ( «*.• ?u-+L-./-i ? and 5 is an (/, - 

./) x (3Z- - J) matrix given by 

s(L)    •••    5(1)   (l-x)a(O)       *(-l 

0     a(L)    ••• 
5 = 

«(-I) 

0 0 

*U 

s(L) 

(1-xMO)  s(-l) 

0 

s(-L) 

0 

5(1)    (1-xMO)   6(-l) 

(5.25) 

Note that the quantity on the left-hand side of (5.24) is a Gaussian random variable with 

mean zero and variance given by 

2N0 (gSkSk - 2||Sw£||Vx + iTSLjSL-jSL-j£/X
2) , (5.26) 

where we use the fact that the last L components of e* are (£T,0,.. .,0). Thus, the prob- 

ability of the error event e corresponding to the error sequence e^ of length k can be 

upper-bounded as 

/ 

Q Pr(e) < Ea 
e$Skek + 2jTSZ_JSä/x 

V 

(5.27) 

^2iVo(e^^-2||5w|||2/x + iTSZ-jSL-jSL-j£/x2) 

where the expectation is taken over the ZL — J components of ä independently of the error 

sequence e/.. Since some of the first L — J components of ä may be uniquely identified by 

specifying the error sequence e*, the expectation is taken over a slightly broader set than 

needed to obtain Pr(e). Thus, (5.27) is an upper bound and not an exact expression. The 

symbol error probability can be upper-bounded using the union bound by assuming absence 

of error propagation from previous error events, as 

/ „..     :_ , . Y 

Q P.<J2 w(e)peEä 
e£E' 

eTSke + 2?SZ_jSä/X 

\ ^2N0(eTSke-2\\SL.ji\\yx + ? SI_JSL-JSL-JHX
2
) ) 

(5.28) 

5.8    Simple upper bounds for MF-DFSE and SBC-MF-DFSE 

The bounds of (4.99) and (5.28) for MF-DFSE and SBC-MF-DFSE receivers require 

ensemble averaging over the untreated interference components. In the case of the MF- 

DFSE(S) receiver, the expectation is taken over L - J interference symbols while in the 
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case of the SBC-MF-DFSE(S) receiver with linear soft tentative decisions, the expectation is 

taken over 3L-J symbols. The latter is cumbersome to evaluate even for very short channel 

memory L. Simpler upper bounds can be obtained by extending the results of Glave [16] 

and Matthews [31] which upper and lower bound the probability of error of a thresholding 

detector in the presence of ISI. The Glave bound was also applied by Mclane [32] to upper 

bound the error probability of truncated-state Viterbi detectors. In the following, we apply 

the Glave bound to the case of MF-DFSE and SBC-MF-DFSE receivers. 

Let w be a Gaussian random variable with mean zero and variance a\ and x be an 

arbitrary random variable subject to the constraints: x G [—/, /] almost surely and E[a:2] < 

a2. Glave showed in [16, theorem 3] that the probability Pr(|u; + x\ > K) can be upper- 

bounded as 

°l Prflw + x\> K) < <Hir>*ffln>-MZ)   **> 
provided that K — I > \fZuw. For a system with antipodal signals and symbol-by-symbol 

detection in the presence of ISI, I can be considered as the peak interference, K as the 

signal amplitude and K — I as the eye opening. 

Now we apply the above result to upper-bound the probability of a particular error event 

for the MF-DFSE(S) receiver obtained in Section 4.8.1. Given an error sequence e 6 E' of 

length k with tail £, the error probability given by 

Pr(£) = El[Q(M^))], „30, 

for an £ {±1} (noise spectral density iV0/2), where 7(e,a) is given by (4.83), is upper- 

bounded as 

provided that 

6(e) -h> VWo, (5.32) 

where4 6(e) = \/erS^e, h = 2\SL-j£\/6(e) and o\ = 4\\SL-j£\\2/62(e). A similar bound 

can be obtained for the MF-DFSE(T) receiver. 

4M = EN- 
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In the case of the SBC-MF-DFSE(S) receiver analyzed in Section 5.7. the error proba- 

bility bound given by (5.27) can be further upper-bounded as 

provided that 
♦-HWÄ ■ «"» 

S\e) -h> y/6N0(rl, (5.34) 

where I2  = 2|Sr5w£|/x, °\  = 4||£rSw£||7x2 and o\  = b\e) - 2||5L_4||2/X + 

iTSl_jSL-jSL-jilx
2. 

Note that the matrix S is given in terms of the sampled channel correlations and the 

normalization factor x which depends on the noise spectral density N0/2. The dependence 

on the noise spectral density means that the matrix S has to be computed for each value of 

the signal-to-noise ratio (SNR). The extensive numerical computation can be avoided as the 

noise spectral density approaches zero. Thus, assuming high SNR, we use the approximation 

x«^E KOI2- * (5-35) 
*■   ' i=—L 

The condition (5.34) is evaluated for the approximate value of x although it does not 

guarantee that the condition is met for the actual value of x- Using the approximate value 

of x in the analysis, we, in fact, upper-bound the error probability for a SBC-MF-DFSE(S) 

receiver that employs the soft decision 

an = (5.36) 
lfeEf=-LK0l2 

to cancel bias instead of the optimum linear soft decision (5.20). 

In order to determine the union bound on the probability of symbol error, one must 

take an ensemble average over all possible error sequences e£E' (4.99), (5.28). In order 

to apply the Glave bound, the corresponding conditions (5.32) and (5.34) must hold for all 

error sequences e € E'. Since the peak untreated interference I\ and Ii depend on the tail 

of the error sequence f, it is not sufficient to check the conditions for the minimum distance 

sequences (^^ = arg min 6(e)) only. In practice, the conditions have to be checked for a 
egU' 

few of the higher distance sequences as well. 

Glave's upper bound applies only at high SNR values and when the eye (due to the 

untreated interference) is open. Matthews [31] determined upper and lower bounds on the 

probability of error for a thresholding detector for the entire range of SNR. His bounds can 

also be applied to our case in a similar manner. 
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5.9    Bound evaluation 

In this section, we describe a generating function method to evaluate the symbol er- 

ror probability bounds for MF-DFSE, BC-MF-DFSE and SBC-MF-DFSE derived in Sec- 

tions 4.10. 5.5 and 5.8, respectively for the case of standard matched filtering. Previously, 

the error probability of DFSE receivers was approximated by considering minimum distance 

error sequences and may be some higher distance sequences, which were found empiricallv. 

In Section 4.12, we described a generating function method that can be used for unbiased 

DFSE receivers. In [20], we proposed a generating function method to evaluate an approx- 

imate bound for the BC-MF-DFSE(S) receiver. This section includes treatment for the 

MF-DFSE(S), BC-MF-DFSE(S) and the SBC-MF-DFSE(S) receivers. 

An error state diagram (ESD) enumerates the distance S(e), the number of symbol 

errors w(e) and the a priori probability p(e) of all error sequences e in the set of allow- 

able sequences E'. Each path through the ESD corresponds to an error sequence in £". 

As in Section 4.12, an error state is denned as the value of L consecutive error symbols: 

{ej-L, ej-L+i,..., e,-_i}. There are {2\A\ — 1)L error states or nodes connected to each other 

through branches. The nodes and branches that correspond to J or more consecutive zeros 

in the middle of the error path are expurgated as in the case of unbiased DFSE receivers. 

The modified error state diagram is shown in Fig. 5.1 for the case of binary symbol alpha- 

bet, channel memory L = 3 and memory order J = 1. The pairs of error states that are 

negative of each other have been combined. Each branch is labeled with a branch distance 

parameter A,- and the number of symbol errors entailed by the transition as the exponent 

of a dummy variable I. 

For MF-DFSE(S), BC-MF-DFSE(S) and SBC-MF-DFSE(S), the distance squared of an 

error path through the ESD is given by (4.115), where the branch distance is given by 

bj = Re | e) L(0)ej + 2 £ *(t)Ci_t-J 1 (5.37) 

which follows from (4.82). The branch distance parameters A,- are listed in Table 5.1. The 

branch distance appears as the exponent of a dummy variable D. 

Note that the difference between the ESD of Fig. 4.7 and that of Fig. 5.1 is that the tail 

branches (corresponding to the tail £ (4.79) of an error sequence) have been expurgated in 

Fig. 5.1. This is because for biased and bias-compensated MF-DFSE receivers, the untreated 

and the residual interference components, respectively, depend on the tail of the error path. 
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Figure 5.1: Error state diagram for MF-DFSE(S) (L = 3, J = 1). 

Table 5.1: Branch distance parameters for MF-DFSE(S) (L = 3, J = 1) 

Ac = D4MW Ai = 2J4[«(0)+2«(1)] 

A2 = D4M°)-2sW A4 = £)4[S(0)+25(l)+2*(2)] 

A6 = £>4[*(0)-2s(l)-25(2)] A7 = £>4[5(0)+25(l)-2S(2)] 

A9 = £>4[s(0)-2s(l)+2s(2)] A10 = /?4[S(0)+2S(l)+2S(2)+2s(3)] 

An = £)4[.(0)-2»(l)-2<(2)-3.(3)] A12 = £)4[»(0)-2»(l)-2.(2)+2s(3)] 

A13 = p4[«(0)+2«(l)-2«(2)-2«(3)] Ai4 = 2j4[«(0)+2»(l)-2»(2)+2»(3)] 

Al5 _ D4[s(0)-2s(l)+2s(2)-2S(3)] Aie = ij4[»(0)+2»(l)+2«(2)-2*(3)] 

A17 = JD4[S(0)-2S(l)+2s(2)+2s(3)] A3 = -^5 = -^8 = ^18-21 = 1 
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In order to take an ensemble average over these components or apply the Clave hound. 

we have to enumerate the error paths that terminate in each tail sequence £ separately 

Noting that the interference term is insensitive to the sign of the tail sequence, we seek 

(2MI ~ 1)L-J_1 generating functions (J < L), in general, corresponding to the error paths 

that terminate with a given tail f such that the last component of f, cjt_i_j ^ 0. 

Let Tj(D,I) be the generating function for the error paths which terminate in the tail £ 
-j 

(j — 1,2,..., 3 ~ _1) found by solving the state equations simultaneously. Each generating 

function can be expanded in a series as 

^(DJ^^^N^D5^ (5.38) 

where Njj is the number of error sequence pairs with distance 6j(l) that terminate in the tail 

£j, per the number of symbol errors and the number of the corresponding input sequences. 

Then, the symbol error probability bound of (4.99) for MF-DFSE(S) can be computed as 

P- ~ W^ g ? JL N"Q 1 ^k—L)       (M9> 
where we use the fact that the untreated interference j(e,a) given by (4.83) depends on the 

error sequence e only through the tail of the error sequence £ and the distance of the error 

sequence 6(e). The input symbols are considered i.i.d. equiprobable and the interference 

is averaged for all possible values of L - J input symbols. When L is relatively large and 

J is small, it leads to several terms in the summation. In this case, the Glave bound can 

be employed which requires averaging for only three values of interference. Note that the 

parameters h and a\ as given in Section 5.8 depend on the error sequence only through its 

distance and the tail sequence. Thus, the Glave bound for MF-DFSE(S) can be evaluated 

as 

where the subscripts / and j are for the /th error sequence with the jth tail in the ESD. 

Similarly, the Glave bound for the SBC-MF-DFSE(S) receiver described in Section 5.8 

can be evaluated as 

r "2 - - [Q (*}WZM) + Q /W + W a2,j,l 
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* (-fc)'(Ä'>- 
The approximate symbol error probability expression for BC-MF-DFSE(S) given by 

(5.13) can be computed as 

. * s 2 E E E w {—jw0—-) F<- <5-42» 
where 7 (f., 6j(l),t) is the residual interference arising from tentative decision errors t, given 

by (5.12). In order to compute (5.42), we assume that the sequence of tentative decision 

errors is an i.i.d. sequence which is independent of the sequence of main decision errors unde 

and has distribution 

0    1-p 

tn = I  +1     \p (5.43) 

.-lb 
where p is the probability of tentative decision error which, in the case of a single-stage 

BC-MF-DFSE(S) receiver, is the symbol error probability of a conventional matched-filter 

(thresholding) detector. 

As the noise is correlated, tentative decision errors are correlated with each other as 

well as with main decision errors. Our assumptions are thus optimistic because errors in 

the tentative detector will tend to occur in bursts, inducing errors in the main detector. 

Nevertheless, independence can be assumed in case noise correlations are small. 

5.10    Performance results 

In this section, we compare the performance of the various receivers described in this 

chapter and Chapter 4 via simulation and analysis. First, we we give some examples of 

equalization for BPSK modulated signaling on static time-dispersive AWGN channels. The 

receivers employ standard matched filtering and are assumed to have perfect knowledge 

of the symbol timing and the impulse response of the channel. Later, we give examples 

of multiuser detection for BPSK modulated signals on symbol-asynchronous DS-CDMA 

channels with AWGN. In the case of multiuser detection, the receiver has knowledge of the 

spreading codes, signal powers and the relative timing of all users. 
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Figure 5.2: BER performance of various receivers in Example 1. 

5.10.1    Equalization examples 

We give four examples of equalization for a single user system. For our first example, we 

consider the symbol-spaced impulse response fl = (0.9617,-0.2005,0.1551,-0.1040). The 

channel has memory L = 3.  Fig. 5.2 shows the bit-error rate (BER) of various receivers 

on channel 1. Each simulation was run for a count of 600 errors. The memory order J for 

the DFSE receivers is set to be one and final decisions are made at a lag G of 30 symbols. 

Note that the channel has much smaller ISI components than the channel in Fig. 4.8. As a 

result, the untreated interference in the case of MF-DFSE, given by (4.83), is small and the 

performance of MF-DFSE is not much worse than MLSE. Bias compensation using hard 

tentative decisions (BC-MF-DFSE) provides a gain of about a dB at moderate SNRs. Bias 

compensation using optimum linear soft tentative decisions (SBC-MF-DFSE) (5.20) shows 

improvement over compensation using hard tentative decisions at high SNR. This is because 

the mean square error after bias compensation is reduced and the effect is more significant 

as the noise diminishes. 

The analytical results shown in Fig. 5.2 were obtained using the generating function 

method described in Section 5.9.  The minimum error distance for the DFSE and MLSE 
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Figure 5.3: BER performance of various receivers in Example 2. 

receivers in Fig. 5.2 is found to be one. For MF-DFSE, we evaluate the upper bound of 

(5.39),.where we take ensemble average over the untreated interference components. For BC- 

MF-DFSE, we evaluate the semi-analytical bound of (5.42), where we assume independence 

between tentative and main decision errors and obtain the probability of tentative decision 

error, p in (5.43), from simulation (the matched filter detection curve in Fig. 5.2). For SBC- 

MF-DFSE, we evaluate the Glave bound of (5.41) using the approximate normalization 

factor of (5.35). For channel 1, the Glave bound holds for Eb/N0 > 6.6 dB. All bounds in 

Fig. 5.2 are approximate in the sense that they do not consider error propagation inherent 

in DFSE receivers. However, error propagation is not significant for channels with moderate 

dispersion. All bounds are tight for the entire SNR range shown. 

For our second example, the channel response is given by /2 = (0.84, -0.30,0.40,0.21). 

This channel also has memory L = 3 and the memory order for the DFSE receivers is 

chosen as one. The channel, is however, more dispersive than the channel in Example 1 (the 

sampled channel correlations s are larger in Example 2). The BER for various receivers 

is shown in Fig. 5.3. Bias compensation using hard tentative decisions (BC-MF-DFSE) 

actually deteriorates performance at moderate to high SNRs due to the lack of reliability of 
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Figure 5.4: BER performance of various receivers in Example 3. 

these decisions. However, by using optimum soft linear tentative decisions, SBC-MF-DFSE 

gains more than a dB over MF-DFSE. WF-DFSE, being an unbiased receiver, performs 

much better than the other DFSE receivers on the minimum phase channel as discussed in 

Chapter 4. 

The analytical results shown in Fig. 5.3 were obtained in the same manner as described 

in Example 1. The Glave bound for SBC-MF-DFSE holds for Eb/N0 > 9.6 dB for this 

channel. Notice that the semi-analytical approximate bound for BC-MF-DFSE does not 

seem to be consistent with the simulation curve. The simplifying assumptions used to 

obtain the semi-analytical expression are unrealistic when the sampled channel correlations 

are relatively large as in this case. The bounds for MF-DFSE and SBC-MF-DFSE are tight, 

the former being tighter as we performed ensemble averaging for the untreated interference 

components in the former case. 

The channel for our third equalization example is a memory 9 minimum-phase chan- 

nel with impulse response /3)m,n = (0.861,0.258,-0.100,-0.274,0.130,0.100,-0.038,0.112, 

—0.114, —0.228). A channel with the same magnitude response as /3,m,„ but a mixed phase 

response is given by famix = (0.5347,0.6543, -0.1310, -0.2710,0.0574,0.0661,0.1225, -0.1132, 
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0.1566. -0.3679). Fig. 5.4 shows the BER performance of various detection .schemes indexed 

with the memory order and the decision lag (J.G). Each simulation was run for a count of 

1000 errors. Ideal noise whitening is assumed for WF-DFSE in the case of minimum-phase 

channel while transmit-matched filtering with Nyquist pulse-shaping at the transmitter is 

assumed in the case of mixed-phase channel. 

Fig. 5.4 shows that BC-MF-DFSE (with hard tentative decisions) gains 1.0 - 1.5 dB 

over MF-DFSE with memory order 5 in the SNR range shown. With linear optimum 

soft decisions, SBC-MF-DFSE gains further over MF-DFSE and the gains increase with 

increasing SNR. The two-stage scheme 2BC-MF-DFSE described in Section 5.2.1 closely 

approaches MLSE performance and obtains a gain of 4 dB over MF-DFSE at an error 

rate of 10~4. Note that the combined number of states in the two stages of 2BC-MF- 

DFSE is kept the same as in (5,45) MF-DFSE. The schemes with soft and two-stage bias 

compensation even perform better than (7,45) MF-DFSE (with higher memory order but 

no bias compensation) for this channel. The performance of WF-DFSE for the minimum- 

phase channel is close to MLSE. However, it's worse for the mixed-phase channel. The 

performance of MF-DFSE and other receivers that operate on matched filter statistics, is 

insensitive to channel phase. Note that the delay incurred from anti-causal noise-whitening 

needed to obtain a minimum-phase channel for WF-DFSE can be compared to the delay of 

a two-stage BC-MF-DFSE scheme. 

Fig. 5.4 shows the simulated BER for (5,45) GA-MF-DFSE which is slightly lower than 

MLSE due to the reasons discussed in Section 5.5.1. Also shown in Fig. 5.4 is the Glave 

bound for single error sequences in SBC-MF-DFSE, which is good for Eb/N0 > 11 dB. 

Since the performance on this channel is dominated by single error sequences, considering 

only single error sequences in the analysis is well justified. In spite of this, we find that the 

bound is very loose. This can be explained by noting that the channel has a large memory 

- 9. In the analysis in Section 5.8, the distribution of a linear combination of interference 

components that appear as an argument to the Q function in (5.27), is replaced by the 

worst case interference distribution concentrating at the three points of no interference, 

peak constructive interference and peak destructive interference (5.33). With the large 

number of significant interference components in this example: 3L - J = 22, the worst-case 

distribution leads to quite pessimistic results. 

For our last equalization example, the channel impulse response is taken from [12, Ex- 
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Figure 5.5: BER performance of various receivers in Example 4. 

ample B]. The channel has memory 14 and is highly dispersive. Fig. 5.5 shows simulation 

results for various schemes with memory order 5 and decision lag 45 after a count of 600 

errors. The performance of WF-DFSE is highly sensitive to channel phase. On this chan- 

nel, symbol-by-symbol decisions are highly unreliable as the eye opening is -200%. Still, 

by using linear soft tentative decisions to cancel bias, significant performance improvement 

is obtained over MF-DFSE. Further improvement is obtained by using the following soft 

decision 

where C is a scale factor which is selected empirically. We found that the MMSE estimator 

of (5.19) which was obtained by assuming the interference as Gaussian, did not perform 

as well as the linear optimum estimator for any of the example channels considered in this 

section. In this example, ( = 5.0 while T-T^ £ |a(t)|2 = 1-94, which is the corresponding 

factor for the MMSE estimator of (5.19). 

The bias compensation schemes shown in Fig. 5.5 use the reduced computation (RC) 

form of the bias term (5.4) which is independent of the state. In case of binary signaling, only 

two bias terms need to be computed at each recursion regardless of the trellis size. Thus, 
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Figure 5.6: BER performance of various detection schemes for DS-CDMA channel 1. 

the added complexity is very low for moderate trellis sizes. We found that the performance 

loss due to the approximation of the bias term was not more than a fraction of a dB for 

any of the channels considered in this section. 

5.10.2    Multiuser detection examples 

We simulate a BPSK modulated asynchronous DS-CDMA system on an AWGN channel 

with eight users whose signature waveforms are derived from Gold sequences of length 31. 

The spreading codes are short i.e. symbol-length. The relative delays of users are fixed for 

the simulation and are in an increasing order. All receivers have a bank of filters each of 

which is matched to the spreading code of a user followed by a synchronized symbol-rate 

sampler. The multiuser channel is static and has the spectrum 
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S(D) = 

31 8- D 7 6 + D -3 + 2D -6 + bD -3 + 2D -2 + D 

8- Z)-1 31 -D 9-2D -6-3D -7 - 2D -D 9 -2D 

7 -D-1 31 -D -1 -D -1 -2 + D 

1 6 + D'1 9 -2D-1 -D-1 31 -D -1 -D -1 
31 

-3 + 2D'1 -6-3D'1 -1 -D-1 31 -D -1 -D 

-6 + 5D-1 -7 -2D'1 -D-1 -1 -D-1 31 -D -1 

-3 + 2D'1 -D-1 -1 -D-1 -1 -D-1 31 -D 

-2 + D-1 9 - 2D-1 -2 + D"1 -1 -D-1 -1 -D-1 31 

Fig. 5.6 shows the BER of user 1 for various detection schemes when all users have 

identical SNR. Each simulation was run for a count of 500 errors. It is evident that even 

with ideal power control, the performance of the conventional matched filter detector that 

makes symbol-by-symbol decisions independently for all users, is significantly worse than 

optimum MLSE. With a four state trellis, MF-DFSE, that operates on the matched filter 

statistic of all users jointly, provides some improvement over the matched filter detector. 

The four-path MF-MA is 2 - 3 dB worse than MLSE. The linear-decorrelator5, that nulls 

out all multiple-access interference, loses about 0.5 - 1.0 dB compared to MLSE due to 

noise enhancement. WF-DFSE that operates on the equivalent whitened minimum-phase 

channel obtains near MLSE performance. Not shown in Fig. 5.6, WF-MA with four survivor 

paths is also found to obtain near MLSE performance. However, WF-DFSE, WF-MA and 

the linear-decorrelator require multiuser channel inversion and/or factorization which has 

complexity quadratic in the number of users. The M-algorithm receivers require sorting 

of survivor paths at each recursion which is not needed by the DFSE schemes as they are 

trellis based. 

The single-stage BC-MF-DFSE receiver which employs hard tentative decisions to cancel 

bias, obtains the best performance on this channel (next to MLSE). With four states only, 

BC-MF-DFSE closely approaches the performance of MLSE which requires 128 states in 

the Viterbi algorithm. Bias approximation in this case does not result in any appreciable 

loss of performance. 

Fig. 5.7 shows the BER of user 1 versus the SNR of the rest of the users. The SNR of 

The linear-decorrelator comprises a zero-forcing filter followed by a thresholding device. 
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Figure 5.7: Near-far performance of various detection schemes for DS-CDMA channel 1. 

user 1 is held constant at 7.0 dB. It can be seen that the matched filter detector, MF-DFSE 

and MF-MA do not perform well in a near-far situation. Such a situation occurs as an 

example when interfering users are closer to the base station than the desired user in the 

uplink and can thus get most of their signal power through to the base station in the absence 

of a (good) power control algorithm. In this case, the untreated interference dominates the 

performance of the sub-optimal matched filter type receivers as the ratio of the interference- 

to-desired signal power increases. However, WF-DFSE, WF-MA and the linear-decorrelator 

perform well as they do not suffer from untreated interference components. 

Note that although the symbols of the desired user are not detected reliably by the 

matched filter detector, the symbols of the interfering users are detected quite reliably as 

their SNR increases. Thus, even in the severe near-far situation, the untreated interference 

(that affects MF-DFSE) is removed reliably by means of hard tentative decisions. As 

a result, BC-MF-DFSE outperforms all other methods, including MF-DFSE with higher 

memory order, and converges to MLSE in high SNR of interfering users, for this system. 

For our second multiuser detection example, we consider another eight-user BPSK- 

modulated DS-CDMA system with short Gold spreading codes of length 31. The multiuser 
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Figure 5.8: BER performance of various detection schemes for DS-CDMA channel 2. 

channel spectrum is given by 

S(D) = 

6 + D 5-6D       4 +3D    -5 + 4D  -2 + D 

3 + 4D       -6-3D -1       10-3D   1 - 2D 

-2 + D -1 -D 7 -2 + D 

31 -D        -7-2D    6 + D    -5 - 4D 

-D-1 31 -10 + D -3 + 2D -6-3D 

-D-1     _7_2D~X -10 + D"1       31 -D       3 + 4D 

-5 + 4D"1  10-3D-1 7 6 + D"1    -3 + 2D"1    -D"1 31 8-D 

-2 + D-1    1 - 2D"1   -2 + D-1 -5 - 4D"1 -6 - 3D"1 3 + 4D"1 8 - D"1       31 

Fig. 5.8 shows the average simulated BER of users for various detection schemes when all 

users have identical SNR. Note that the spreading codes in this system have higher partial 

correlations than the system in Example 1. The conventional matched filter detector does 

not perform very well. As a result, bias compensation using hard tentative decisions provides 

31 -D -9 

-D-1 31 -D 

-9 -D-1 31 

1 6 + D"1 3 + 4D-1 -2 + D- 
31 5 - 6D"1 -6 - 3D"1 -1 

4 +3D"1 -1 -D-1 

93 



some gain at moderate SMt, but causes a loss at high SNR. By using linear MMSE estimates 

for bias compensation in SBC-MF-DFSE, the loss can be converted to a significant gain at 

high SNR. 

The multiuser detection results presented in this section were obtained for DS-CDMA 

systems with short (symbol-length) spreading codes. In current DS-CDMA systems, long 

spreading codes are generally employed which have periods much longer than the sym- 

bol interval. Long codes are preferable over short codes as they have better autocorre- 

lation and cross-correlation properties. However, long codes are difficult to dead with for 

multiuser detection schemes that perform some kind of linear filtering like zero-forcing or 

noise-whitening. This is because the multiuser channel changes every symbol interval in 

the presence of long codes. Even with short codes, the multiuser channel changes with user 

arrival and departure. These variations in the channel are difficult, if not impossible, to 

track for a linear filter. Symbol-asynchronism also poses a problem. However, it is quite 

easy to generate user code partial correlations at the base station by means of a bank of 

on-line correlators that are properly synchronized to each user's code. The tracking of the 

medium responses of users has become a standard for Rake receivers used in conventional 

DS-CDMA receivers. These are the only requirements for a multiuser receiver like MF- 

DFSE that operates on joint matched filter statistics. Thus, MF-DFSE with hard or soft 

bias compensation is quite attractive for asynchronous DS-CDMA systems with short or 

long spreading codes. 

5.11    Conclusions 

In this chapter, we considered bias compensation (cancellation of untreated interference 

components) for reduced trellis and tree search algorithms that operate on matched filter 

statistics. Our main emphasis was on bias-compensated matched-filter decision feedback 

sequence estimation (BC-MF-DFSE) receivers with standard matched filters. Cancellation 

of future interfering components is performed by using tentative decision feedback. We 

considered using hard and soft tentative decisions for this purpose as well as multistage 

schemes. As soft tentative decisions, we considered optimum symbol-by-symbol linear and 

non-linear MMSE estimates of symbols. 

We examined the error-rate performance of MF-DFSE with and without bias compen- 
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CHAPTER 6 

Soft-output algorithms 

6.1    Introduction 

The various algorithms considered in the previous chapters generate hard decisions at 

the output. Such algorithms are fine as long as one is interested in minimizing the error rate 

for a single system. For concatenated systems with memory, however, the performance of 

the outer system can be significantly enhanced by providing it with soft decisions in the form 

of likelihoods, symbol a-posteriori probabilities (APP) or erasures. One example of such a 

system is error control coding for intersymbol interference (ISI) channels. Another example 

is multiuser demodulation for a direct-sequence CDMA (DS-CDMA) system with error 

control coding and interleaving. In order to make the most of the code, the demodulator 

must provide soft information to the decoders. Unfortunately, most multiuser detection 

algorithms ignore the possibility of generating this reliability information and concentrate 

instead on minimizing the demodulated error rate. 

Recently, a considerable amount of work has been done in symbol-by-symbol detection 

techniques for channels with ISI [1,3,21,23,25,28]. Li et al. [28] showed that optimum soft- 

output equalization can be performed with a forward-only recursion with complexity that 

grows exponentially with the channel memory. An earlier algorithm proposed by Abend 

et al. [1] requires complexity which is exponential in the decision lag, which is generally 

chosed to be much larger than the channel memory. The optimum soft-output algorithm 

(OSA) of Li et al. operates on discrete-time statistics containing white noise. On the 

other hand, the optimal symbol-by-symbol detection (OSSD) algorithm of Hayes et al. [23] 

operates on standard matched filter statistics.   They and other authors, however, over- 
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estimate the complexity of this algorithm. We derive a forward-recursive matched-filter 

optimum soft-output algorithm (MF-OSA) following their development. The complexity of 

this algorithm is at par with the OSA. The MF-OSA can be reduced to add-compare-select 

operations mostly like the sub-optimum soft-output algorithm (SSA) of [28], resulting in 

the MF-SSA. 

The OSA can be applied to the problem of multiuser estimation, but this requires noise 

whitening. Despite the strides made in the noise-whitening technique [47], it requires siz- 

able complexity and is not very suitable for long spreading sequences and dynamic channels. 

The algorithm of Verdu [42] operates on standard matched-filter statistics like the MF-OSA. 

However, it has high latency as it requires a backward-forward recursion like the BCJR al- 

gorithm [3]. The MF-OSA is, thus, attractive in this case. It is an optimum demodulator 

for a coded multiuser DS-CDMA system with ideal interleaving, in the sense that without 

exploiting any information about coding in the demodulation process, it supplies each indi- 

vidual decoder with as much information as possible about the sequence of modulator-input 

symbols for the corresponding user while suppressing the irrelevant information about other 

user's sequences. This is called user-separating demodulation in [36]. 

Bayesian Conditional Decision Feedback Estimation (BCDFE) proposed in [25] for ISI 

channels is a reduced-complexity symbol-by-symbol estimation technique that employs an 

efficient method for trellis memory reduction like the DFSE algorithm. The scheme is 

designed to produce symbol APP estimates to enhance outer decoding. However, we note 

that while the scheme is capable of providing good hard decisions on symbols, it fails to 

deliver reliable estimates of symbol APPs. Fortunately, this can be fixed by a modification 

of the algorithm. The modified BCDFE algorithm recursively updates conditional symbol 

APP estimates (conditioned on the reduced state) and averages them over the state at a 

smoothing lag to obtain reliable symbol APP estimates. 

The chapter is organized as follows. Sections 6.2 and 6.3 describe the MF-OSA and MF- 

SSA respectively. The modified BCDFE algorithm is derived in Section 6.4. We compare 

the complexity of the various algorithms in Section 6.5. The algorithms are considered for 

soft-output multiuser estimation with error control coding in Section 6.6. Simulation is un- 

dertaken to compare the performance of the various algorithms with the soft-output Viterbi 

algorithm (SOVA) [21] for a DS-CDMA system with four asynchronous users. Simulation 

results are presented in Section 6.7. 

97 



6.2    A matched-filter optimum soft-output algorithm 

In this section, we derive an optimal forward-recursive soft-output algorithm that oper- 

ates on standard matched filter statistics. We consider the system model of Section 2.2. The 

baseband received signal is given by (2.3). The algorithm finds the set of symbol a-posteriori 

probabilities (APP) {p(an\y(t))}„~o , for an G A. From the log-likelihood function given 

by (2.6), it follows that 

p(out,y(t)) = Cexp 
2N0 Jtei 

N-l 

y(t)- J2anh(t-nT;t) 
n=0 

2     1 

dt P(QLN) (6.1) 

where aN = [a0,ai,.. .,CXN-I]T is a sequence of hypothesized symbols which is assumed 
N-i 

to be independent and identically distributed with probability p(g_N) =   JT an and C is a 
n=0 

constant independent of the sequence hypothesis. From (2.6), (2.11) and (2.18), it follows 

that 

-      p(aN,y(t)) = Ciexp[A(zN,aN)/2N0]p(aN)' (6.2) 

where ZJJ = [z0, z\,..., ZAT-I]T is the sequence of standard matched statistics given by (2.14) 

and C\ is another constant independent of the sequence hypothesis. The log-likelihood 

metric1 A(zj!,aN) is given by 

N-i 

A(z^,a^) = Yl r„(2„,an,crn) (6.3) 
n=0 

where the branch metric Tn(zn, an,an) corresponding to the state <rn : an_i, a„_2,..., an_£, 

and the input symbol an is given by 

r„(z„,an,<rn) = Rela*n 2z(n) - s(0; n)an - 2 ^ s(l; n)an-i 
l=i 

For n = 0,1,..., N - 1, 0 < i < n - L - 1 and a G A, define 

^Un^n)= 2 exp[A(zn,a„)/2JV"o]Kön)> 
SLn-L 

ttiUn ,°n, a) = J2        eXP tAte»' Sn )/2JV°] P^" )' 

where2 xn = [s0, ^l, • • •, Zn-i]T- Then, for 0 < i < n - L, we have 

P(Sn+l) 

(6.4) 

(6.5) 

(6.6) 

^(in+l^n+l'0)    = X) eXP 
«n-L+1l0^0* 

M^QLn) + rn(2rn,an,(Tn) 
2iVn 

'The notation is modified slightly to indicate the functional dependencies. 
2The notation single bar | means 'given'. 
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El n ( ~7i i O. ri • 0"n )        ,        . V-^ exP  irr  p(o„)    2^    CX
P 

, L ^-i»o J i 

Au„.«„: 
7>(<i„ 

2-Yo 

5Z      exp[rn(zn.Qn,o-n)/2A'o]7J(Qn)fi1(^,1,(Tn.o) (6.7) 
0n_i|0fi = 0 

where the first equality follows from (6.3) and the second equality follows from the fact that 

the branch metric Tn(zn,an,an) is independent of the hypothetical symbols Q_n_L. In (6.7). 

it is understood that fin-z,^,?,,,«) = ft(2„,än), where dn = an\an^L = a. Similarly, it 

can be shown that 

ft(£„+i,<M-i)=  £ exp[Tn(zn,an,an)/2N0)p(an)n(z4l,an). (6.8) 
On-i 

By substituting (6.5) and (6.6) in (6.2), note that 

p(eN,y(t))= Y, Kav»y(0) = CI^UN^N) (6.9) 
S.N-L 

and for 0 < i < N - L - 1, 

p(crN,ai = a,y(t))=       J^      p(&v,y(0) = C^UN,^,«)- (6.10) 

Thus, for 0 < i < N - L - 1, we get the symbol APPs as 

p(ai = oW!)) = ^Äi^). (6.n) 

The last L symbols are assumed known at the receiver. Equations (6.8), (6.7) and (6.11) 

complete the recursion of the matched-filter optimal soft-output algorithm (MF-OSA) with 

forward-only recursion. The algorithm was first derived in [18] for soft-output multiuser 

detection using a bank of matched filters. In [18], the algorithm is referred to as optimal 

soft-output multiuser estimation (OSOME). 

It is not necessary to observe the entire signal in order to obtain close to optimum 

estimates of symbol APPs. In general, good estimates can be obtained at a sufficient 

decision lag as in the case of an MLSE algorithm. For a decision lag G > L, the MF- 

OSA(G) algorithm consists of the following steps. For each time n = 0,1,.. .,N — 1, 

compute and store the state metrics given by (6.8). For each n > L, i = n — G,. ..,n — L 

and3 a G A', compute and store the symbol metrics given by (6.7). For each n > G and 

a € A', estimate symbol APPs as 

p(an-G = a\y(t)) = —=£ -r- r . (6.12) 

3 A' is the set of all but one symbol (say a') in the alphabet A. 
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7>(fl„_G = ft'll/O) = 1 -  H M«n-C = o|l/(0)- (ü-13) 

Note that the symbol a priori probabilities p(a„) can be dropped from all computations if 

the symbols are equally likely a priori. 

6.3    A matched-filter sub-optimum soft-output algorithm 

The MF-OSA algorithm described in the previous section requires a large number of 

multiplication and exponentiation operations which lead to high implementation complexity. 

In this section, we simplify the MF-OSA algorithm so that it requires mostly add-compare- 

select operations, like an MLSE algorithm. For this purpose, we define 

n\zn,on) = max[A(&,&)/2JV0 + log(Ks»))]. (6-14) 
A 

SLn-L 

ft;.(ln,an,«)=     max     [A(Sn,on)/2iVo + log(p(an))]. (6.15) 

A derivation similar to (6.7) can be used to show that for 0 < i < n - L, 

fi(-(zn+i,aB+i,o)=     max     [Tn(zn,an,an)/2N0 +^(z^a^a)}+log(p(an))     (6.16) 
an-L\°<i=°< 

and 

ß'Un+i,*»+i) = max [r*(*»'««>°n)/Mo + Ü'(zn,an)) + log(p(an)). (6.17) 

Note that (6.17) is similar to the recursion of the MLSE receiver of Section 2.4. By substi- 

tuting (6.14) in (6.2), we see that 

max     p(aN, y(t)) = Cx exp [ftjfey, ON, «)] • (6-18) 
°LN-L\a>=a 

Comparing the above equation with (6.10), note that the sum of exponentials of positive 

quantities is dominated by the term with the largest exponent. Thus, symbol APPs can be 

approximated as 

* = <,|,(")8iL»^-pfc*-)]' (     ' 
For a decision lag G > L, the matched-filter sub-optimal soft-output algorithm MF-SSA(G) 

consists of the following steps. For each time n = 0,1,..., N - 1, recursively compute and 

store the state metrics given by (6.17). For each n > L, keep the history of the best surviving 

path dn_GK), • • •, an-L(an) leading to each state <xn, as in the Viterbi algorithm. For each 
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v > L, i = n - G,.. ..n - L and a -£ Q,-(CT„ ). compute and store the symbol metrics given 

by (G.16) (note that W,(~.n.an.ä,(an)) = Q'(~.n.an), so there is no need to compute and 

store it separately). For each n > G and a 6 .4, estimate symbol APPs as 

.                . „..         Ean+1exp[^_G(in+1,an+1,Q) 
7?(an_G = a\y(t)) «  ^  (6.20: 

Note that the above algorithm avoids the multiplication operations of the MF-OSA(G) 

algorithm of Section 6.2. Exponentiation operations are needed, however, in the last step. 

The algorithm was proposed in [18] for multiuser detection, where we refer to it to as 

sub-optimal soft-output multiuser estimation (SSOME). A variation of the above algorithm 

estimates symbol APPs as 

Pyo-n-G = a\y(t)) « — l— :L_ (6.2i) 

where <r* = arg   max   . This algorithm requires only two exponentiation operations in the n'(2„^n) 
last step. The algorithm is referred to as SS0ME1 in [18]. It is similar in construction to 

the sub-optimal soft-output algorithm (SSA) of [28]. 

6.4    A reduced-state soft-output algorithm 

In this section, we describe a forward-recursive reduced-state soft-output algorithm 

which operates on whitened-matched filter statistics. The algorithm can be considered 

as a reduced-complexity alternative to the optimal soft-output algorithm (OSA) of Li et al. 

[28]. It was obtained by modifying the algorithm of Lee et al. [25], which is referred to as 

Bayesian conditional decision feedback equalization (BCDFE). The BCDFE algorithm does 

not produce good soft outputs. The modified algorithm derived here was first proposed in 

[18] where we refer to it as modified BCDFE (MBCDFE). 

The algorithm operates on whitened-matched filter statistics which may be obtained by 

applying the noise-whitening filter to the discrete-time matched filter statistics zN. The 

equivalent whitened discrete-time system model is given by 

L 

Vn = Yl /(*! n)an-i + Wn (6.22) 
t"=0 

where wn is a sample of a complex white Gaussian noise process with mean zero and variance 

N0 and /(i; n) are whitened channel coefficients (possibly time-varying in index n). 
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Lot (.7.6') be the memory order and the decision lag for the algorithm, respectively 

chosen arbitrarily in the range 0  <  J  <  L  < G.    Let j/r   =  [yo-V\ <Jn-\]7   be the 

sequence of statistics received up to time n - 1 and ßn : aT1_i.Q,1_2 <*n-J represent the 

reduced state at time n. The algorithm recursively estimates the probabilities p{ßn\y_n ) and 

p(an_i = a\y , ßn) for J + 1 < i < G and a e A. For this it employs the recursive relations: 

P(ßn+i\yn+1) = Y^ „(3 ^ a    , v \v y (6-23) 

p(an..j = a\y.., ßn+i) = ^ JT, j—7 (6.24) 
p(ßn+i,an-J = a,yn\yn) 

P(an..j = a\yn+l,Vn+l) = 1 

and 

p(a„_t- = a\yn+vßn+1)  =    ^ p{an-i = a\yjri+1,ßn+i,an-j)p(an-J\yn+1,ßn+1) 
an-j 

~    £ Kßn-.' = (*\yn,ßn)p(an-j\yn+1,ßn+i) (6.25) 
an-J 

for J + 1 < i < G, where in (6.25) we assume that given y_n and /3n, the symbols an_t- 

(J + 1 < i < G) are conditionally independent of the statistic yn and the input sym- 

bol an. The assumption is true for J = L, i.e., a full-state algorithm. The probability 

p(ßn+i,<xn-j,yn\yn) is given by 

p(ßn+1,an-j, yn\yn) = p(yn\yn,an,ßn)p(ßn\yn)p(an) (6.26) 

where using the assumption following (6.25), the probability p(yn\yn,<xn,ßn) is given by 

P(yn\ln, <*n,ßn) = £ P {Vn |«n» A», {an-i}fc=J+l ) P ({«n-J.W+11 In* &»)      (6-27) 

which is approximated by the Gaussian density 

P(yn\yn, <*n,ßn) « P (yn |ön,/?n,{än-«(/?n)}f=J+l) (6-28) 

where {än-i(ßn)}fLJ+1 are conditional decisions (conditioned on state ßn) obtained as 

än-i(ßn) = argmaxjp(a„_,-|w ,/?„). (6.29) 

The modified BCDFE (J, G) algorithm consists of the following steps. For each time 

n = 0,1,...,N - 1, compute and store the state probabilities for each reduced state ßn 

using (6.23), (6.26) and (6.28). For each n > J, J + 1 < i < G and a £ A, compute and 
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Algorithm Compare Add Multiply Divide Exp Storage 

MF-OSA 1 2L(2Ar + G- L + 3) 2L+I(G- L+l) 1 0L+1 2L[/+/((7-I)] 

MF-SSA 2L(G- L + l) 2L{2Ar + 2G-2L + A) 0 1 ■7I+1 2L[/+(/+l)(G-/.)] 

MF-SSA1 2L(G- 1 + 2) 2L{2Ar + 2G-2L + 2) 0 1 1 ?L[f + (f + 1)(G - D) 

SOVA 2L{G- L + 2) 2L(2,4r + 3e + 4) 2i+1(e) 2L 2L 
2L[/+(/+l)(G-L)] 

BCDFE 2J+1(G- J) + l 2J(2Ar + 4) 2'(3) 9J+i 2J+1 
2-;(/ + G- 7) 

MBCDFE 2J(L- J) + l 2J(2Ar+G- 7 + 4) 2J(2G-27 + 3) 2-M-J 2J+1 
2J[/(G-7+l) + L-7] 

Table 6.1: Complexity in number of operations per iteration (/ = #bits required to store a 

floating point number, e = #places where the hypothesized symbols of two merging paths 

differ.) 

store the conditional symbol APPs using (6.24), (6.25), (6.26) and (6.28). For each n> J 

and J < i < L — 1, obtain and store conditional decisions using 

ä„_,-(j9B+i) = argmaxp(a„_,-|y     ,ßn+i). (6.30) 

Note that these decisions will be used in (6.28) in the next recursion. Finally, for each 

n > G, estimate symbol APPs using 

p(an-G = a\y      ) = ]T p(an-G = a\yn+vßn+1)p(ßn+1\yn+1) (6.31) 
ßn+l 

The number of multiplication and exponentiation operations required in the above algorithm 

can be cut drastically by operating in the log domain as in the algorithm described in 

Section 6.3. 

Note that the BCDFE algorithm proposed in [25] recursively obtains conditional hard 

decisions instead of conditional symbol APPs in the modified algorithm (6.25). This results 

in a significant loss of the soft information. The modified algorithm uses conditional hard 

decisions in (6.28) only to truncate the state, in the same manner as in DFSE. This does 

not have much effect on the quality of soft decisions as we observe from simulation. 

6.5    Complexity comparison 

Table 6.1 compares the complexity of the various algorithms discussed in this chapter 

for binary symbol alphabet. It is assumed that Ar add operations are needed to compute 

the branch metric r„(.) in (6.8) (or the Gaussian density (6.28) for the BCDFE algorithms). 

103 



,Zf(n) 

Multiuser 
Estimator 
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i 

Deinterleaver K —>. Decoder K 

Figure 6.1: Multiuser receiver for a coded DS-CDMA system. 

Note that the complexity of MF-OSA(G), where G is the decision lag, is on the order of 

2 (G—L). MF-SSA does not require any multiplication operations. However exponentiation 

operations are needed for soft-output generation. MF-SSA1 avoids most of the exponenti- 

ation operations as well. The complexity of MBCDFE(J,G), where J is the memory order 

chosen, is on the order of 2J(G - J). The modified algorithm requires some extra storage 

and computational complexity as compared to the original algorithm. 

6.6    Application to multiuser estimation 

The algorithms described in this chapter are considered for multiuser estimation with er- 

ror control coding. Fig. 6.1 shows a multiuser receiver for a coded asynchronous DS-CDMA 

system. The multiuser estimator operates on the discrete-time matched-filter statistics of 

all users jointly and produces a-posteriori probabilities for the coded symbols of all users at 

the output. These soft outputs are de-interleaved for each user and then fed into the soft- 

decision decoder for each user separately. The original and modified BCDFE algorithms 

operate on whitened-matched filter statistics. The corresponding receiver is similar to the 

receiver of Fig. 6.1 except that it includes a noise-whitening filter which follows the matched 

filter bank. 

6.7    Simulation results 

We simulated an asynchronous DS-CDMA system with four users that employ BPSK 

modulation and rate |, memory 4 convolutional encoding over an AWGN channel.  Code 
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Figure 6.2: BER performance of various algorithms in ideal power control. 

symbol sequences of all users are interleaved by a 30 x 30 interleaves Each user is assigned 

a short Gold spreading sequence with 7 chips/coded symbol. The relative delays of users 

are arbitrarily chosen in an increasing order and are fixed for the simulation. The multiuser 

channel has the spectrum 

S(D) = i 

7 -4 - D       1 + 2Z> 

-4 - D~l 7           -4-D 

1 + 2D-1 -4-D-1          7 

-D'1 3          -2 + D -l 

-D 

3 

-2 + D 

7 

(6.32) 

Fig. 6.2 shows the BER of user 1 versus the signal-to-noise ratio (Eb/No) in perfect 

power control. Each simulation was run for a count of 500 errors. It can be seen that the 

BER curves of OSOME(3), OSOME(12), SSOME(3), SSOME(12) and MBCDFE(2,3) lie 

in a band of width 0.2 dB. The OSOME(12) algorithm loses about 1.2 dB over coded single 

user performance. SSOME(3) achieves a 0.4 - 0.5 dB gain over SOVA(12) in the range 

3-6 dB. Note that SSOME(3) requires only state metrics (and no symbol metrics) to be 

computed. We have not plotted the BER performance for SSOME1 because SS0ME1(3) 
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Figure 6.3: BER performance of various algorithms in near-far situation. 

(the case of no symbol metrics) is identical to S0VA(3) and SS0ME1(12) approaches the 

performance of SS0ME(12). This shows that for small smoothing lags, it is beneficial to 

average the output symbol soft information over the states in the trellis, as in the case of 

SSOME. However, for large lags, it is sufficient to obtain the soft information from the most 

likely state in the trellis, as in SS0ME1. The modified BCDFE algorithm with reduced- 

state trellises gains 1.0 — 2.0 dB over the original BCDFE algorithm because the soft outputs 

of the later are no better than hard decisions. 

Fig. 6.3 shows the BER of user 1 versus Eb/N0 of interfering users (with Eb/No of 

user 1 fixed at 3.0 dB). 105 data symbols were used for each simulation. The BER curves 

of all schemes tend to single user performance under extreme conditions of multiple-access 

interference. Thus, Fig. 6.2 depicts almost worst case performance for user 1 given its Eb/No- 

Note that MBCDFE(1,3) outperforms SOVA(12) under power control in moderate Eb/No- 

Although the application of MBCDFE requires noise-whitening, its performance/complexity 

tradeoff is highly desirable. 
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6.8    Conclusions 

In this chapter, we derived soft-output algorithms for channels with memory which op- 

erate on standard matched-filter statistics. The new optimum and sub-optimum soft-output 

algorithms (MF-OSA and MF-SSA respectively) are similar in structure and complexity to 

the OSA and the SSA proposed earlier for whitened statistics. The algorithms have low 

latency as they employ a forward-only recursion. They were considered for multiuser de- 

tection in the presence of error control coding. The algorithms are especially suitable for 

asynchronous DS-CDMA systems with long spreading sequences. Adaptive complexity re- 

duction techniques like the T-algorithm and T-algorithm with soft-limiting, can be applied 

to reduce the exponential complexity of these algorithms. 

We also derived a reduced-state forward-recursive soft-output algorithm that operates 

on whitened matched-filter statistics. The algorithm generates good quality soft information 

with reduced complexity. It is obtained by modifying an algorithm proposed earlier which 

fails to generate good soft information. 
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CHAPTER 7 

Conclusions 

In this thesis, we have considered optimal and reduced-complexity techniques for equal- 

ization and multiuser detection. New techniques were developed, motivated by analysis of 

existing techniques and spurred by practical applications. One problem that was tackled 

was optimal1 equalization for a wireless communication system with excess signal band- 

width and a fast time-varying medium. A new receiver was proposed which comprises 

a filter matched to the transmit pulse-shaping filter followed by a fractional-rate sampler 

and an adaptive Viterbi algorithm. The front-end filter is non-adaptive which is desirable 

for implementation. The receiver is insensitive to sampler timing phase due to fractional 

sampling. The Viterbi algorithm exploits the knowledge of the pulse-shaping filter to ac- 

count for the correlation in the sampled statistics and requires only one-step prediction for 

medium-response coefficients. 

We have presented a unified analysis of decision feedback sequence estimation (DFSE) 

and M-algorithm receivers for systems with finite memory that examines the effect of the 

receive filter and the branch metric of the reduced trellis or tree search algorithm. We 

considered receivers with a front-end filter matched to the overall channel response (standard 

matched filter) or the transmit filter response (transmit matched filter) and a symbol or 

fractional-rate sampler. An event error analysis indicates that interference components 

(bias) arise if there is a mismatch between the receive filter and the branch metric. These 

components can not be resolved by the trellis or tree search algorithm in a biased receiver 

and severely limit its error-rate performance. We have shown that an unbiased receiver 

consists of a standard or transmit matched filter followed by the appropriate noise-whitening 

optimal in the sense of a known time-varying channel. 
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or zero-forcing filter and a reduced trellis or tree search algorithm with the appropriate 

metric. 

We have compared various trellis-based techniques on the basis of the distance of a 

given error sequence which characterizes the probability of the associated error event. Our 

definition of the error distance includes the effect of noise enhancement which is inherent in 

trellis-based techniques operating on statistics containing non-white noise. This allowed us 

to compare trellis-based techniques with various receive filters on a fair basis.  We showed 

that whitening filter DFSE (WF-DFSE) has higher error distance than zero-forcing filter 

DFSE (ZF-DFSE) and truncated-memory MLSE (TM-MLSE) with pre-filtering. Matched 

filter DFSE (MF-DFSE), in the case of standard matched filtering, achieves the same error 

distance as an MLSE receiver. Unfortunately, matched-filter type receivers belong to the 

class of biased receivers.   Thus, their error-rate performance is dominated by untreated 

interference components for most channels in spite of their excellent error distance. After 

identifying the anti-causal interference components affecting MF-DFSE, we proposed several 

schemes that utilize tentative decisions to cancel these components. For this purpose, we 

considered hard and soft tentative decisions obtained in a symbol-by-symbol fashion as well 

as a multistage configuration. 

We have obtained union bounds on the symbol error probability of the various receivers 

assuming no error propagation. In the case of MF-DFSE, with and without linear soft- 

input bias-compensation, we applied a Chebyshev technique for upperbounding the error 

probability in the presence of untreated or residual interference. We have outlined modi- 

fied generating function methods to evaluate the union bounds. Simulation and analytical 

results were presented for equalization of inter-symbol interference and multiuser detection 

for direct-sequence code-division multiple-access (DS-CDMA) systems. The bounds were 

found to be tight in general for channels with relatively small memory. It was found that 

soft bias compensation enhances the performance of MF-DFSE for all channels of practical 

interest. Compensation of just the dominant bias term for MF-DFSE, obtains most of the 

gain without increasing complexity significantly. The scheme does not require any process- 

ing filters like the noise-whitening or zero-forcing filter and is insensitive to channel phase. 

These attributes make it attractive for multiuser detection for asynchronous DS-CDMA 

systems and bidirectional equalization for the GSM system. 

We have derived soft-output algorithms for channels with memory which operate on 
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standard matched-filter statistics. The new optimum and sub-optimum algorithms employ 

a forward-only recursion and have complexity which is exponential in the channel memory 

only. These algorithms are suitable for soft-output demodulation for a coded multiuser DS- 

CDMA system. We have also derived a reduced-state soft-output algorithm which operates 

on whitened statistics. The algorithm provides reliable soft decisions with an adjustable 

performance/complexity tradeoff. It was obtained by modifying the BCDFE algorithm 

which fails to provide reliable soft decisions, as we find by means of simulation of a coded 

DS-CDMA system. 
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APPENDIX A 

Analysis of the alternative DFSE receiver 

Consider the DFSE receiver of Fig. 4.4. Following the treatment given in Section 4.6.1, 

we see that a first event error occurs at time 0 in the reduced trellis search algorithm of 

Fig. 4.4 if 

2Re{öfcf (P-1)^} "if Cf R'kQiCk^ > 2Re{g^C^(P-1)kxi}-giC^R'kQ
t

kCkak 

(A.l) 

where x'k = [x'(0),x'(l),...,x'(k - 1)]T and the matrices Ck, R'k and Q'k are principal 

submatrices of dimension k of the matrices C, R' and Q' respectively. Using (4.28), (A.l) 

can equivalently be written as 

2Re{efCf(p-1)fcPfcxN«/}   >   e^C^R'kQiC^+ 2Re{£Ck
HR'kQ'kCkak} 

-   2Re{<£CFiP-^kPkxNQCa} (A.2) 

which is the condition for the error event e defined in Section 4.6.1. The unbiasedness 

condition for this receiver can then be written as 

CFiP-^kPkxNQC^CfRkQ'MhlO^N-k]    Vl<k<N (A.3) 

or equivalently using the fact that R'kQ'k = Q'kR'k
H'- 

(P-1)kPkxN = Q'k
H(Q'-H)kxN    Vl<k<N (A.4) 

where the matrix (Q'~H)kxN comprises the top k rows of the matrix Q'~H. It follows from 

(A.2) and (A.3) that the probability of the error event e for an unbiased DFSE receiver 

with the front-end filter matched to the transmit filter response, is given by 

Pr(£) = Q (     , ^W^ ) • (A.5) 
\2jNoeZC»RiQ'k(*-i)kRkQkCkekJ 
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An upper bound on the first event error probability is given by (-4.G2) with the error distance 

6(e) in this case defined as 

He) = -r=-k    k    k^k (A.6) 
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APPENDIX B 

Filters that satisfy unbiasedness 

Let Y be an N x N Toeplitz matrix with elements 

1 i = j 

V(ij) = "i  y(i -j)  0 < |t- j\ < Ly 

0 otherwise 

(B.l) 

Let P~l be the N x N Toeplitz matrix defined in (4.19) with the diagonal element p'(0) 

set to 1. Assume that the inverses of the submatrices Yk and (P~1)k exist for all k < N. 

Proposition B.0.1 Let max(Ly,lj,lp) + 1 < N < oo. // 

(P-1)kPkxN = Yk(Y-1)kxN    V* = 1,2,...,JV-1 (B.2) 

then 

P = Y -l (B.3) 

In order to prove the above proposition, we make use of the following lemma [5]: 

Lemma B.0.1 Let T be an m x m invertible Toeplitz matrix subdivided into k x k, k x 

(m - k), (m - k) x k and (m — k) x (m — k) submatrices Tu, Ti2, T2i and T22 as shown 

below. Then S = T-1 is partitioned similarly into Sn, S\2, S21 and S22: 

T- 

r                         ~\ ~ 

Tn  T12 

T21  T22 

, S = 
Sn  S12 

S21  S22 
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where, assuming Tu is invcrlible, 

Sn   =  T-'+T-'Tni^-TnT-'Tnr'T^T-1. 

S\2   =   —T{\ Ti2(T22 - T2iTn T\2)    . 

•$'21   =   -(T22 ~ T2\T^\ T\2)~ T2\TU , 

5*22    =    (T22 - ^21 Ml  T\2)      ■ 

Let the matrices P"1 and Y be subdivided into k x k, k x (Ar - k), (N - k) x k and 

(iV - k) x(N -k) submatrices P[x, P{2, P21 
and ^22 and 5u> ^12, Y21 and y22 respectively 

as shown below 

Yu   5^12 
>-i _ 

pi pi 
Ml r12 

P' P' M>1 M22 

, Y = (B.4) 

I21  I22 

for k = 1,2,..., iV - 1. Then, using Lemma B.0.1, (B.2) can be broken into two equations 

concerning the first k and the last N - k columns of the k x N matrices on either side of 

(B.2), given by 

T>I rp'-l  1   p'-l p' f pi   _ pi  pi-l pi \-lp'  p'-11 — 
MllMl    +M1   M2VM22       MUMl   M2/     MlMl   J~ 

■ruPn1 + ^^12(^22 - ^IMI
1
^)

-1
^!^

1
] (B.5) 

and 

M'J-MT'M^ - P2iPu1Pi2)-1) = Yn[-YjY12(Y22 - Y21Y^Yl2)-') (B.6) 

respectively for k = 1,2,.. .,N - 1. Substituting (B.6) into (B.5) and simplifying, we get 

^IMT
1
 = YnYü1. (B.7) 

Let Jfc = 1, then P[x = Yu = 1 and (B.7) implies that the first column of the matrix 

P-1 is equal to the first column of the matrix Y. Since P_1 and Y are Toepltiz matrices, 

all elements in the lower triangle of P-1 are equal to the corresponding elements of Y, i.e. 

-P21 = Y21 for all k = 1,2,..., N - 1. Thus, (B.7) implies that 

A'l = Yn (B.8) 

for all k = 1,2, ...,iV-l. Since iV > max(Ij,,//,/p) + l, (B.8) involves all non-zero elements 

of the matrices P_1 and Y. Thus, 

P = Y~\ (B.9) 
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Note that the diagonal elements of the matrices P  l and Y were set to 1 to factor out 

a scaling factor. In general, we have 

P = cY~1 (B.10) 

where c is a constant scaling factor. 
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APPENDIX C 

Error distance for ZF-DFSE 

Let the matrices S and S 1 be subdivided into k x k, k x (N — k), (N — k) x k and 

(N - k)x (N — k) submatrices Su, S12, S21 and 522 and 5/1? S[2, £21 and S22 respectively 

as shown below 

Äi   A, 5/,   5/- "     - 
(C.l) 5 = 

5n   £12 
, s-i = 

S\i  £12 

S21   £22 •>21    ^22 

Then, using Lemma B.0.1, we get 

Sk(S     )kSk    =    Sk + Si2(S22 — S2lSn S12)      S21 

=    Sk + Si2S22S2\. (C.2) 

SkiS-^kSk = sk + (C.3) 

For k > L, we have 

Ok-L 0 

0     S^S^LS 

Note that for JV > L, 5-1 is near Toeplitz in the middle of the matrix. Thus, we can replace 

the matrix (S22)L in (C.3) by the principal submatrix S'L of an N x N Toeplitz matrix S' 

with elements s'(i,j) = s'(i — j), given by the inverse z-transform of 1/S(z). Thus, for an 

error sequence e G E' with tail £ as defined in (4.79), we have 

eH'SkiS-^kSke « e"£*e + ^Sf-jS^A-jf. 

The error distance for ZF-DFSE(S) given by (4.76) can then be approximated as 

eHSke 

(C.4) 

%) 
}/sPSk&+iHSg_jS'L_JsL.ji 

(C.5) 
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The above expression is approximate for error events occurring near tlie edges of the data 

burst where the noise correlation is not the same as in the middle, while it is exact for short 

error events occurring toward the middle of the burst. 

Similarly, it can be shown that the error distance for ZF-DFSE(T) given by (4.77) can 

be approximated as 

s,,      e"C»<S>kCke  (C6) 

" ~ Je»C»$kCke + iH(CLdXL-j)H«(*%ßCLdXL-ji 

where $' is an Ar x N Toeplitz matrix with elements <f>'(i,j) = <j>'(i - j) obtained from the 

inverse z-transform of l/$(z) (where $(2) is the z-transform of {<£(?)})• 
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APPENDIX D 

Error probability of two-stage BC-MF-DFSE(S) 

In this appendix, we derive expressions for the probability of a particular error event in 

a two-stage BC-MF-DFSE receiver with standard matched filtering. The first stage of the 

receiver is MF-DFSE(S) with memory order Jj and the second stage is BC-MF-DFSE(S) 

with memory order «72- The second stage uses the final decisions of the first stage to cancel 

bias. A valid error sequence in the first (second) stage does not have J\ (J2) consecutive 

zeros in the middle of the sequence and has Ji (J2) consecutive zeros at the end of the 

sequence. Let E\ (E2) be the set of all valid error sequences in the first (second) stage. 

It follows from (4.78) that an error event beginning at time l\ and ending at time I2 

(corresponding to the error sequence t — [i/a,i/j+i,.. .,ti2-i]
T G Ei, I = I2 — h) occurs in 

the first stage (assuming no error propagation from previous error events) if 

2Re{tMv/} > tHSit - 2Re{£'H5f_ja'} (D.l) 

where yf = [uh,.. .,uh-1]T, t = [U2-L,- • .,ti2-j1-1]T and a' = [al2,...,ah+L-j1-i]T. 

Given errors £" = [tk,.. .,tk+L-J2-i]T in the first stage, an error event occurs between 

times 0 and k (corresponding to the error sequence e = [eo,ei,.. .,ek-i]T € E2) in the 

second stage if 

2Re{eHu"}>eHSke + 2Re{e"HSS-jt"}. (D.2) 

where «" = [tt0,.. .,ttfc-i]T and e" = \ek-L, ■ ■ -,ek-J2-i]T- Note that the sequence of 

tentative decision errors t" can be the result of several contiguous error events1 in the first 

stage. We assume that t" can result from at most one error event in the first stage. This 

assumption is actually true for J\ > L — J2 - 1. 

1 Error events in the first stage are separated by at least J\ consecutive correct decisions. 
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1 

Let 7" he tlte set of all error sequences t_ G E\ that include 1_" as a subsequence. Let 

A" = 2Re{c/V'} and Y = 2Re{/'V}- Given c G £2- £ € 7" and a' £ AL~'h . X and V 

are jointly Gaussian random variables with means zero, variances a2
x = 4.V0£W5^-£ and 

<Ty. = 4NotHSit respectively, and covariance 

fc-i /2-i 

E[A'y] = Y, E 4AroRe{e;^(" - «0*m}. (D.3) 
n=0 m=/i 

The joint probability of occurrence of e € E2 and i € T is given by 

Pr(c,Ö=      E        /     /    fxY{x,y)dxdy Pa' (D.4) 

where xx = e"S*e + 2Re{e"//S£_Jf} and yi = tffS/t- 2Re{?HS£_jg/}. The probability 

that the error event e: e£E2 occurs in the second stage is thus given by 

Pr(e) = dU \f^Pj Pra" = A) + E Pr(^' 4) (°-5) 

where T" is a subset of the set T which includes all error sequences in T except those for 

which t" = 0. Note that Pr(£" = 0) can be over-bounded by l2. Thus, we get 

Assuming independence between errors occurring in the two stages (i.e. independent X and 

Y), we get 

^e)*Q(W^J+J*J^Ql—27*3*35—J 
n {tHSlt-2Re{?»S?_Ja'}\ 
Q I 2^0^^ J P^ {      } 

2
The bound becomes asymptotically tight at high signal-to-noise ratio. 
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